

#### **ATMOSPHERIC NEUTRINO PHYSICS WITH JUNO**

Giulio Settanta, on behalf of the JUNO Collaboration

Institut für Kernphysik, Forschungszentrum Jülich, Germany NeuTel 2021 Workshop - Neutrino Masses and Mixings - 22.02.2021





Mitglied der Helmholtz-Gemeinschaft

#### **ATMOSPHERIC NEUTRINOS**

- Atmospheric v flux is detected at Earth as the result of Cosmic Rays interaction in the atmosphere and secondary hadrons decays
- "Conventional" flux from  $\pi$  and K dominates the spectrum
- Different branching ratios imply different flux normalizations
- Present measurements come mainly from Cherenkov detectors
- Next generation liquid scintillators can contribute as well
  - Large size and fine energy resolution
  - Reduced ability to reconstruct single particles. But:
  - Low detection threshold
  - $\rightarrow$  Great potential in exploring the low energy range
  - Crucial input for theoretical models
- Which impact can a future LS based detector like JUNO have?



2



## JUNO DETECTOR

- Top Tracker
  - Plastic scintillator strips
  - Atm.  $\mu$  median angular resolution  $\sim 0.2^\circ$
- Outer Water Pool (WP) ——
  - Cherenkov µ veto, 2400 20" PMTs
  - > 99.5%  $\mu$  detection efficiency
- Central 20 kt liquid scintillator \_\_\_\_\_
  - $\sim$  36 m diameter acrylic sphere
  - 17600 20" PMTs
  - 25600 3" PMTs
- High photo coverage (> 75%), photon yield (10k / MeV) and photon detection efficiency (> 28%)
- Main goal: neutrino mass hierarchy determination
- Construction complete in 2022
- Suitable for many other measurements, like atmospheric neutrinos!







#### **MC SIMULATION**

- The starting point is the initial flux assumption
- In this work, the HKKM14 model was used, at the JUNO location
  - v energy, flavor, direction, ...
  - 3D MC model
  - Rigidity cutoff included
  - Total uncertainty < 10 % between 1 and 10 GeV</li>
- JUNO can play a major role in measuring the flux in the sub GeV energy region!







## **MC SIMULATION**

• The simulation is divided into 2 main steps:

#### Step I:

- Neutrino interaction generation inside the detector:
  - Max energy: 20 GeV
  - Statistics: ~ 400 y ve + v $\mu$  (and antineutrinos)
  - Flux model: HKKM14
  - Software: GENIE Neutrino Monte Carlo Generator

#### **Step 2:**

- Propagation of secondary particles
  - GEANT4 based simulation
  - Interaction with photo cathode included
  - J. Phys.: Conf. Ser. 664 072053 (2015)
- Oscillation effects included (vacuum + matter)





# Sample selections and flavor identification



### **ATMOSPHERIC** µ **REJECTION**

- Atm. µ can contaminate the atm. v sample
- Several orders of magnitude difference between atm. v and atm. μ rates
  - Atm.  $\mu$  rate in the CD: 3 4 Hz
  - Atm.  $\mu$  are able to mimic the atm.  $\nu$  topology
- Full MC simulation of atm.  $\mu$  to evaluate the impact on the analysis
- Dark noise can be a relevant issue in WP PMTs, so it has been included
  - Single PMT dark noise rate: several tenths of kHz Haiqiong Zhang et al 2020, J. Phys.: Conf. Ser. 1468 012197



 Key point for atm. μ rejection: they produce an high amount of light both in the WP and in the Central Detector (CD)

Atm. v  $\rightarrow$  much light in CD and no light in WP Atm.  $\mu \rightarrow$  much light in CD and much light in WP







#### FIDUCIAL CUTS

- Targets:
  - Exploit calorimetric features of JUNO select Fully Contained (FC) events
  - Select well reconstructed events
  - Remove atm.  $\mu$  events

| Selection / Eff.                | Ve  | νμ  |
|---------------------------------|-----|-----|
| R <sub>vertex</sub> < 16 m      | 74% | 74% |
| <b>N</b> ніт <sup>₩Р</sup> < 50 | 92% | 85% |
| Total                           | 68% | 63% |

- $R_{VERTEX} \equiv vertex center distance$ 
  - $\rho_{RECO}(x', y', z') = \rho_{TRUE}(x, y, z) \oplus f_{GAUS}(\sigma = 1 m)$  to reproduce uncertainty
- After fiducial cuts, the sample is composed at 97% of FC events (non FC are almost all  $v_{\mu}$ )

- The original neutrino flavor is inferred by timing information
- Event classification:
  - Vµ CC interaction: v<sub>µ</sub> + <sup>12</sup>C / p  $\rightarrow$  µ + H, event elongated in time because of µ ability to travel long distances and its late decay;
  - Ve CC interaction:  $v_e + {}^{12}C / p \rightarrow e + H$ , point-like event because of the short e track;
  - NC interaction:  $v_x$  +  $^{12}C$  /  $p \rightarrow v_x$  + H , geometry of event depends on the particles produced.
- A time residual based variable tres is defined for each hit on the 3" PMT system (small time resolution).  $t^{i}$

$$t_{res}^{i} = t_{hit}^{i} - \left(\frac{R_{V}^{i} \cdot n}{c}\right)$$

- $\sigma = 1.6$  ns gaussian smearing on the true vertex to simulate TTS
- Take the RMS of the profile  $\rightarrow \sigma(tres)$

EPJ Web Conf. 209 01011 (2019)

 $t_{hit}^{i}$  : arrival time of the hit on the i-th PMT  $R_{V}^{i}$ : vertex – i-th PMT distance



- The original neutrino flavor is inferred by timing information
- Event classification:
  - V $\mu$  CC interaction: v $_{\mu}$  + <sup>12</sup>C / p  $\rightarrow \mu$  + X, event elongated in time because of  $\mu$  ability to travel long distances and its late decay;
  - Ve CC interaction:  $v_e + {}^{12}C / p \rightarrow e + X$ , point-like event because of the short e track;
  - NC interaction:  $v_x + {}^{12}C / p \rightarrow v_x + X$  , geometry of event depends on the particles produced.
- A time residual based variable tres is defined for each hit on the 3" PMT system (small time resolution).  $t^{i}$

$$t_{res}^{i} = t_{hit}^{i} - \left(\frac{R_{V}^{i} \cdot n}{c}\right)$$

 $t_{hit}^{i}$  : arrival time of the hit on the i-th PMT  $R_{V}^{i}$ : vertex – i-th PMT distance

•  $\sigma = 1.6$  ns gaussian smearing on the true vertex to simulate TTS







10

- The original neutrino flavor is inferred by timing information
- Event classification:
  - Vµ CC interaction: v<sub>µ</sub> + <sup>12</sup>C / p  $\rightarrow$  µ + X, event elongated in time because of µ ability to travel long distances and its late decay;
  - Ve CC interaction:  $v_e + {}^{12}C / p \rightarrow e + X$ , point-like event because of the short e track;
  - NC interaction:  $\nu_x$  +  $^{12}C$  /  $p \rightarrow \nu_x$  + X , geometry of event depends on the particles produced.
- A time residual based variable tres is defined for each hit on the 3" PMT system (small time resolution).  $t_{hit}^{i}$  : arrival time of the hit

$$t_{res}^{i} = t_{hit}^{i} - \left(\frac{R_{V}^{l} \cdot n}{c}\right)$$

•  $\sigma = 1.6$  ns gaussian smearing on the true vertex to simulate TTS





on the i-th PMT

distance

 $R_V^i$ : vertex – i-th PMT















#### SPECTRUM UNFOLDING

- Probabilistic method to extract the energy spectrum from detector observables
  - Based on Iterative Bayesian Unfolding
    - G. D'Agostini, Nucl.Instrum.Meth.A 362 (1995) 487-498
    - G. D'Agostini, arXiv:1010.0632

#### • ~5 yrs of detector livetime MC events have been generated as real data

• Observable distribution, after all selections:







#### $v_e + v_\mu$ SPECTRA





#### **SUMMARY AND CONCLUSIONS**

#### JUNO has potential to measure the atmospheric neutrino energy spectrum

- Advantages: low energy threshold and fine energy resolution
- Sub GeV to multi GeV energy range
- First measurement with a LS based detector
- Pushing measurements in multi MeV region, interesting for rare event searches
- Time information allows a good discrimination power between  $v_e$  and  $v_{\mu}$  flavor
- Energy spectrum can be measured within a 25% uncertainty in 5 yrs of detector livetime: systematics dominated
- Flux entirely available from beginning of data taking!
- Paper in preparation for peer-reviewed journal
  - Internal review almost complete



#### **SUMMARY AND CONCLUSIONS**

#### JUNO has potential to measure the atmospheric neutrino energy spectrum

- Advantages: low energy threshold and fine energy resolution
- Sub GeV to multi GeV energy range
- First measurement with a LS based detector
- Pushing measurements in multi MeV region, interesting for rare event searches
- Time information allows a good discrimination power between  $\nu_e$  and  $\nu_\mu$  flavor
- Energy spectrum can be measured within a 25% uncertainty in 5 yrs of detector livetime: systematics dominated
- Flux entirely available from beginning of data taking!
- Paper in preparation for peer-reviewed journal
  - Internal review almost complete





## **Backup slides**



#### DARK CURRENT RATE (DCR) IMPACT

- DCR has been added to the simulation
  - Value of WP LPMTs DCR from 15% highest noise PMTs
  - µ momentum distribution from calculations within the collaboration
  - 200ns time window, targeted for cosmic  $\mu$
  - PDF of DCR:



#### **SPECTRUM UNFOLDING**

**JÜLICH** Forschungszentrum

- The unfolding matrix can be interpreted as a conditional probability
- It links the effect (the observable) to the cause (the energy spectrum)





#### SYSTEMATICS BALANCE





- Total uncertainty between 10 25%
- Dominant contribution from cross section



#### **σ(tres) FEATURES**

• Distribution of  $\sigma(tres)$  for pure leptons at I GeV





#### **σ(tres) FEATURES**

• Distribution of  $\sigma(tres)$  for pure hadrons





#### **σ(tres) FEATURES**

• NPE distribution for different sub – classes of NC events





•  $\sigma(\text{tres})$  spread VS vertex shift

 $\sigma(t^{smearV}_{res})$  -  $\sigma(t^{trueV}_{res})$  [ns]

٠

3





#### THE SNIPER FRAMEWORK

- Software for Non-collider Physics ExpeRiments
- Based on GEANT4
  - Built on C++, Python employed for user interface
- JUNO Detector Simulation includes:
  - electro-magnetic interaction
  - decay
  - hadron elastic and inelastic interactions
  - scintillation (including re-emission)
  - Cherenkov emission
  - optical absorption
  - photon photocathode interaction (QE)
- Final result is a map of hits on the detector, in terms of charge and time





#### LINEARITY OF ENERGY RESPONSE

• Edge effects due to energy deposit into the acrylic, total reflections of photons...

