#### Breaking isotropy in the early Universe with neutrino oscillations

Rasmus S. L. Hansen

NBIA and DARK at the Niels Bohr Institute

in collaboration with Shashank Shalgar and Irene Tamborra based on 2012.03948

XIX International Workshop on Neutrino Telescopes, Padova/virtual, February 22, 2021

#### INTERACTIONS



Co-financed by the Connecting Europe Facility of the European Union







Friedmann equation:

.

$$H = \sqrt{rac{8\pi arrho}{3}}rac{1}{m_{
m Pl}} \; ,$$

Continuity equation:

$$\dot{\rho} = -3H(\rho + P),$$

Breaking isotropy in the early Universe with  $\boldsymbol{\nu}$  oscillations



# **Neutrino oscillations**

Equation of motion:

$$rac{d
ho(\mathbf{p},\mathbf{x})}{dt} = -i\left[\mathcal{H}(
ho,\mathbf{p},\mathbf{x}),
ho(\mathbf{p},\mathbf{x})
ight] + \mathcal{C}(
ho,\mathbf{p},\mathbf{x}) \; ,$$



# **Neutrino oscillations**

Equation of motion:

.

$$\frac{d\rho(\mathbf{p},\mathbf{x})}{dt} = -i\left[\mathcal{H}(\rho,\mathbf{p},\mathbf{x}),\rho(\mathbf{p},\mathbf{x})\right] + \mathcal{C}(\rho,\mathbf{p},\mathbf{x}) ,$$

Hamiltonian:

$$\begin{aligned} \mathcal{H}(\rho,\mathbf{p},\mathbf{x}) &= \frac{\mathcal{U}\mathcal{M}^{2}\mathcal{U}^{\dagger}}{2p} + \sqrt{2}G_{\mathrm{F}}\int \frac{d^{3}\mathbf{p}'}{(2\pi)^{3}}(\rho(\mathbf{p}',\mathbf{x}) - \bar{\rho}^{*}(\mathbf{p}',\mathbf{x}))(1 - \mathbf{v}' \cdot \mathbf{v}) \\ \text{vacuum term} & \text{asymmetric neutrino term} \\ &- \frac{8\sqrt{2}G_{\mathrm{F}}p}{4} \frac{\mathcal{E}_{l} + \frac{1}{3}\mathcal{P}_{l}}{m_{W}^{2}} \\ \text{symmetric matter term} \end{aligned}$$



# Homogeneous universe model with two angle bins

# **Assumptions:**

- Universe is homogeneous.
- Angular dependence approximated with two angle bins.
- Two neutrino oscillation framework.
- Relaxation time like approximation for the collision term.



# Linear stability analysis

 $\mu$  - Neutrino term.

 $\omega_{\lambda}$  - Matter and vacuum term.

 $\textit{s} = \rho_{\textit{ee}} - \rho_{\textit{xx}}$  - Difference between  $\nu_{e}$  and  $\nu_{x}$  densities. Eigenvalues:

$$\begin{split} \Omega_1^{\pm} &= \frac{1}{2} \left( 3\mu(s-\bar{s}) \pm \sqrt{-4\omega_{\lambda}\mu(s+\bar{s}) + 4\omega_{\lambda}^2 + \mu^2(s-\bar{s})^2} \right), \\ \Omega_2^{\pm} &= \frac{1}{2} \left( \mu(s-\bar{s}) \pm \sqrt{4\omega_{\lambda}\mu(s+\bar{s}) + 4\omega_{\lambda}^2 + \mu^2(s-\bar{s})^2} \right). \end{split}$$



# Linear stability analysis

 $\mu$  - Neutrino term.

 $\omega_\lambda$  - Matter and vacuum term.

 $\textit{s} = \rho_{\textit{ee}} - \rho_{\textit{xx}}$  - Difference between  $\nu_{\textit{e}}$  and  $\nu_{\textit{x}}$  densities. Eigenvalues:

$$\begin{split} \Omega_1^{\pm} &= \frac{1}{2} \left( 3\mu(s-\bar{s}) \pm \sqrt{-4\omega_{\lambda}\mu(s+\bar{s}) + 4\omega_{\lambda}^2 + \mu^2(s-\bar{s})^2} \right), \\ \Omega_2^{\pm} &= \frac{1}{2} \left( \mu(s-\bar{s}) \pm \sqrt{4\omega_{\lambda}\mu(s+\bar{s}) + 4\omega_{\lambda}^2 + \mu^2(s-\bar{s})^2} \right). \end{split}$$

Eigenvectors:

$$\begin{split} w_1^{\pm T} &= \left( -\frac{-\mu(s-2\bar{s})-\omega_\lambda + \Omega_1^{\pm}}{\mu\bar{s}}, \quad -1, \quad +\frac{-\mu(s-2\bar{s})-\omega_\lambda + \Omega_1^{\pm}}{\mu\bar{s}}, \quad +1 \right)^T ,\\ w_2^{\pm T} &= \left( +\frac{\mu s+\omega_\lambda - \Omega_2^{\pm}}{\mu\bar{s}}, \quad +1, \quad +\frac{\mu s+\omega_\lambda - \Omega_2^{\pm}}{\mu\bar{s}}, \quad +1 \right)^T \, . \end{split}$$

In the basis:  $(\epsilon_R, \bar{\epsilon}_R, \epsilon_L, \bar{\epsilon}_L)^T$ .

Breaking isotropy in the early Universe with  $\nu$  oscillations



#### Linear stability analysis

$$s_{\rm lim} = \left| \frac{56\pi^4}{270\zeta(3)m_W^2} \left\langle p \right\rangle T_{\rm cm} + \frac{\sqrt{2}\pi^2 \Delta m^2}{6\zeta(3)G_{\rm F}} \frac{1}{\left\langle p \right\rangle T_{\rm cm}^3} \right|$$



Breaking isotropy in the early Universe with u oscillations

.



#### Isotropic initial conditions, NO



Breaking isotropy in the early Universe with  $\boldsymbol{\nu}$  oscillations



#### Isotropic initial conditions, NO



Breaking isotropy in the early Universe with  $\boldsymbol{\nu}$  oscillations



#### Anisotropic initial condition, NO



Breaking isotropy in the early Universe with  $\boldsymbol{\nu}$  oscillations



#### Anisotropic initial condition, NO



Breaking isotropy in the early Universe with  $\boldsymbol{\nu}$  oscillations



# Change in $N_{\rm eff}$

$$\begin{split} N_{\rm eff} &\equiv \frac{\rho_{\nu}}{7/8\rho_{\gamma}} \left(\frac{11}{7}\right)^{3} \\ &\approx \left(\frac{\int dr \ r^{3}(\rho_{ee} + \bar{\rho}_{ee} + \rho_{xx} + \bar{\rho}_{xx})}{2\int dr r^{3} f_{0}} + 1\right) \frac{(11/7)^{3}}{(T_{\gamma}/T_{\rm cm})^{4}} \end{split}$$

For no neutrino oscillations,  $N_{\rm eff}=3.04596.$ 

The cases with oscillations give:

|                      | NO, iso           | NO, ani           | NO, ani $(\mu_{ m ini}=10^{-9})$ | IO, iso/ani       |
|----------------------|-------------------|-------------------|----------------------------------|-------------------|
| $\Delta N_{\rm eff}$ | $0.9	imes10^{-4}$ | $5.0	imes10^{-4}$ | $4.9	imes10^{-4}$                | $5.8	imes10^{-4}$ |

Breaking isotropy in the early Universe with  $\boldsymbol{\nu}$  oscillations



- Neutrino-neutrino forward scattering cannot be neglected for neutrino oscillations in the early Universe even when  $n_{\nu_{\alpha}} \approx n_{\bar{\nu}_{\alpha}}$ .
- Our model with two angle bins show substantial anisotropy for NO, and we find a correction to  $N_{\rm eff}$  comparable to higher order QED corrections.
- A small neutrino-antineutrino asymmetry is amplified by many orders of magnitude through non-linear neutrino flavor evolution.



# Homogeneous universe model with two angle bins

$$\begin{aligned} \frac{\partial \rho_R(p)}{\partial t} - Hp \frac{\partial \rho_R(p)}{\partial p} &= -i[\mathcal{H}_R(\rho_R, \rho_L, p), \rho_R] + \mathcal{C}_R(\rho_R, \rho_L, p) ,\\ \frac{\partial \rho_L(p)}{\partial t} - Hp \frac{\partial \rho_L(p)}{\partial p} &= -i[\mathcal{H}_L(\rho_R, \rho_L, p), \rho_L] + \mathcal{C}_L(\rho_R, \rho_L, p) ,\end{aligned}$$

Hamiltonian:

$$egin{aligned} \mathcal{H}_R(
ho_R,
ho_L,m{p}) &= rac{\mathcal{U}\mathcal{M}^2\mathcal{U}^\dagger}{2p} + \sqrt{2}G_{
m F}\intrac{dp'}{2\pi^2}(
ho_L(p')-ar
ho_L^*(p'))\ &-rac{8\sqrt{2}G_{
m F}p}{3}rac{\mathcal{E}_I}{m_W^2}\ , \end{aligned}$$

Breaking isotropy in the early Universe with  $\nu$  oscillations



# **Collision term - approximations**

Divide into four different types of reactions each with a rate:

- **①** Scattering with electrons and positrons,  $\Gamma_{s,\alpha}$
- 2 Annihilations to electrons and positrons,  $\Gamma_{a,\alpha}$
- **3** Neutrino-neutrino scatterings,  $\Gamma_{\nu\nu}$
- (a) Neutrino-antineutrino collisions,  $\Gamma_{\nu\bar{\nu}}$

Equilibrium distributions are assumed when calculating the rates.

Functional form: One equilibrium distribution in each gain term.

$$f(T_{
m eq},\mu) = rac{1}{\exp({\it p}/T_{
m eq}-\mu/T_{
m eq})+1} \;,$$

All other distribution functions are represented by normalized energy densities,  $u_{\alpha\beta}$ .



# **Collision term - approximations**

Divide into four different types of reactions each with a rate:

- $\blacksquare Scattering with electrons and positrons, \Gamma_{s,\alpha}, T_{eq} = T_{\gamma}, \ \mu = \pi_{\alpha}$
- 2 Annihilations to electrons and positrons,  $\Gamma_{a,\alpha}$ ,  $T_{eq} = T_{\gamma}$ ,  $\mu = \mu_{\alpha}$
- (3) Neutrino-neutrino scatterings,  $\Gamma_{\nu\nu}$ ,  $T_{\rm eq} = T_{\nu_{\alpha}}$ ,  $\mu = \pi_{\nu_{\alpha}}$
- ( Neutrino-antineutrino collisions,  $\Gamma_{\nu\bar{\nu}}$ ,  $T_{\rm eq} = T_{\nu_{lpha}}$ ,  $\mu = \pi_{\nu_{lpha}}$

Equilibrium distributions are assumed when calculating the rates.

Functional form: One equilibrium distribution in each gain term.

$$f(T_{
m eq},\mu) = rac{1}{\exp({\it p}/T_{
m eq}-\mu/T_{
m eq})+1} \; ,$$

All other distribution functions are represented by normalized energy densities,  $u_{\alpha\beta}$ .



#### **Collision term**

For electron neutrinos:

$$\begin{aligned} \mathcal{C}_{ee} &= \Gamma_{a,e} \left[ \left( \frac{T_{\gamma}}{T_{cm}} \right)^4 f(T_{\gamma}, \mu_e) - \rho_{ee} \right] \\ &+ \Gamma_{s,e} \left[ f(T_{\gamma}, \pi_e) - \rho_{ee} \right] \\ &- \Gamma_G \operatorname{Re} \left( \bar{u}_{ex} \rho_{ex}^* \right) \\ &+ \Gamma_{\nu\nu} (2u_{ee} + u_{xx}) \left( f_{\nu_e} - \rho_{ee} \right) \\ &+ \Gamma_{\nu\bar{\nu}} \left( \bar{u}_{xx} f_{\nu_x} - \bar{u}_{ee} \rho_{ee} \right) \\ &+ \operatorname{Re} \left[ \left( \Gamma_{\nu\nu\nu} u_{ex}^* + 4 \Gamma_{\nu\bar{\nu}} \bar{u}_{ex}^* \right) \left( f_{ex} - \rho_{ex} \right) \right], \end{aligned}$$

 $imes 10^{-3}$ 

1.2 1.0 0 u/ 0.8 Annihilations to  $e^+e^-$ 

Breaking isotropy in the early Universe with  $\boldsymbol{\nu}$  oscillations

### **Collision term**

For the off-diagonal:

$$f_{ex} = (a_x + b_x p)f_0 + i(a_y + b_y p)f_0$$
,

 $a_x$ ,  $b_x$ ,  $a_y$  and  $b_y$  conserve the first and second moments of  $\rho_{ex}$ . Off-diagonal:

$$\begin{split} \mathcal{C}_{ex} &= -D\rho_{ex} + d \ f_{ex} - C \ \bar{u}_{ex} (\rho_{ee} + \rho_{xx}) \\ &+ \Gamma_{\nu \bar{\nu}} (\bar{u}_{ee} + \bar{u}_{xx}) (2f_{ex} - 3\rho_{ex}) + \Gamma_{\nu \bar{\nu}} \ \bar{u}_{ex} ((f_{\nu_e} + f_{\nu_x}) - 2(\rho_{ee} + \rho_{xx})) \\ &+ \frac{3}{2} \Gamma_{\nu \nu} (u_{ee} + u_{xx}) (f_{ex} - \rho_{ex}) + \frac{1}{2} \Gamma_{\nu \nu} u_{ex} ((f_{\nu_e} + f_{\nu_x}) - (\rho_{ee} + \rho_{xx})) \end{split}$$

Breaking isotropy in the early Universe with  $\nu$  oscillations



## Effects of collisions and potentials

$$P_{z, ext{int,X}} = \int rac{dr}{4\pi^2} P_{z,X}(r) \quad ext{ for } \quad X \in \{R,L\}$$



- 15 / 10



## Isotropic initial conditions





Breaking isotropy in the early Universe with  $\boldsymbol{\nu}$  oscillations



Isotropic initial conditions - spectrum  $\Delta\left(\frac{dn}{dr}\right) = \frac{T_{\rm cm}}{2\pi^2}p^2(\rho_{\alpha\alpha} - f_0), \qquad n_0 = \int \frac{dp}{2\pi^2}p^2f_0(p)$  $imes 10^{-3}$ NO, isotropic IO, isotropic — No osc.,  $\nu_e$ 1.0----- No osc.,  $\nu_x$  $---- \nu_e, X = R$ 0.8---  $\nu_x, X = R$  $\Delta \left(\frac{dn}{dr}\right)/n_0$ 0.41 and and a second second 0.20.00.02.55.07.5 $10.0 \ 12.5 \ 15.0 \ 17.5 \ 20.0$ 0.02.55.07.5 10.0 12.5 15.0 17.5 20.0  $r = E/T_{\rm cm}$  $r = E/T_{\rm cm}$ 

Breaking isotropy in the early Universe with u oscillations



#### Anisotropic initial conditions

$$n_{\alpha} = \int \frac{dp}{2\pi^2} p^2 \rho_{\alpha\alpha}, \qquad n_0 = \int \frac{dp}{2\pi^2} p^2 f_0(p)$$





Anisotropic initial conditions - spectrum  $\Delta\left(\frac{dn}{dr}\right) = \frac{T_{\rm cm}}{2\pi^2} p^2 (\rho_{\alpha\alpha} - f_0), \qquad n_0 = \int \frac{dp}{2\pi^2} p^2 f_0(p)$ NO, anisotropic IO, anisotropic  $\times 10^{-3}$ — No osc.,  $\nu_e$ 1.0----- No osc.,  $\nu_x$ ---  $\nu_e, X = R$ 0.8 $---- \nu_e, X = L$  $rac{1}{2} \nabla \left( rac{dn}{dr} 
ight) / n_0$ ---  $\nu_{\tau}, X = R$ ---  $\nu_r, X = L$ 0.40.20.02.55.07.5 10.0 12.5 15.0 17.5 20.0 0.0 2.55.07.5 10.0 12.5 15.0 17.5 20.0 0.0 $r = E/T_{\rm cm}$  $r = E/T_{\rm cm}$ 

Breaking isotropy in the early Universe with u oscillations