

Ageing of the scintillator detectors of the T2K off-axis and on-axis detectors, ND280 and INGRID

Maria Antonova on behalf of the <u>T2K collaboration</u> Instituto de Fisica Corpuscular (UV and CSIC), Valencia, Spain

> XIX International Workshop on Neutrino Telescopes February 2021

Motivation

- Plastic scintillators coupled with wavelength shifting (WLS) fibres and silicon photomultiplier readouts are widely used in various applications
 - Neutrino physics, LHC experiments, medical use detectors etc.
- Long-term operation study is beneficial for understanding detector performance

The T2K neutrino experiment

- Collecting data for over 10 years
- Near detector complex with multiple scintillator bar designs
- Great source of data for such study!

▶ ~ 9,500 scintillator bars

"Off-axis" concept: 0.6 GeV peak beam tuned for 1st osc. maximum at SK point

M.Antonova for T2K collaboration

Overall ~64,000 SiPMs

in ND280 and INGRID

Analysis method

- Light yield (LY) corrected for
 - Attenuation in fibre
 - Detector specific calibration
 - Track angle correction
- Used minimum ionising particle (MIP) like tracks from cosmic rays (ECal, INGRID) or v interactions (PØD, FGD, SMRD)
- Fitted with Landau-Gauss convolution to get most probable value (MPV)
- MPV distribution over time fitted with linear function
- Due to detector construction current study doesn't separate between a <u>counter</u>, <u>WLS fibre and SiPM</u>

Ageing analysis results

INGRID

 1.6 ± 0.1

Projected response

- Jight Yield (PEU ECal bars with double end readout record **Iowest MPV**
- ECal can be used to project the "worse" future response of ND280 scintillators
- This study uses exponential fit
 - Better describes data on longer time scale

Light Yield (Year) = $A \exp\left(\frac{-Year}{a}\right)$

- Projection of the light yield up to 2040
 - ND280 and INGRID to be used for T2K-II, T2HK

Response drops by ~50% over 30 years this still remains above corrected charge threshold (5.5PEU)

Separate fibre and scintillator ageing study

- Without attenuation correction MIP MPV can be extracted at different point from MPPC
- Fitting this data as a function of time allows to calculate MIP MPV at 0cm from the sensor \u00e3
 - Removes fibre effect
- Degradation rates (with and without fibre effect) are consistent ~1σ

ECal Bar Type	Readout Type	A (PEU)	B (PEU/yr)	Annual Light Yield Red	duction (Reference (%)
Barrel X	Single-ended (mirrored)	38.22 ± 0.49	0.76 ± 0.09	2.07 ± 0.25	(1.98 ± 0.04)
Barrel Y	Single-ended (mirrored)	37.10 ± 0.46	0.75 ± 0.08	2.11 ± 0.23	(2.02 ± 0.05)
Barrel Z	Double-ended	27.66 ± 0.18	0.51 ± 0.03	1.91 ± 0.11	(2.15 ± 0.07)
Downstream	Double-ended	27.84 ± 0.32	0.48 ± 0.05	1.79 ± 0.18	(1.87 ± 0.07)

- Studied the rate of ageing for the T2K near detector complex scintillators with ~10 years of data collection
- Observed annual light yield degradation:
 - ECal,PØD, and INGRID (identical material, all produced at Fermilab) 1.6%-2.2%
 - ▶ FGD (Canada) and SMRD (Russia) **1.2%** and **0.9%** respectively
- Results are comparable with similar studies by MINOS experiment 1.2 % per year
- Inconsistent with <u>MINERvA study</u> (was performed on a smaller time scale) 7.5% per year
- Results of the study will be used to:
 - Predict long term performance of the detector
 - Parts of current T2K detector setup will be used for T2K-II/T2HK
 - Correct signal reconstruction methods
 - Already applied in reconstruction for INGRID and ND280 detectors
 - Take into account for new generation of the detectors
 - SuperFGD, WAGASCI, Baby-MIND in T2K/T2K-II /T2HK

Thank you! (Official T2K publication in preparation, stay tuned) Backup

Scintillator detectors in T2K

- Plastic scintillator bars of various profiles and sizes*
 - ~ 9,500 in INGRID and ~ 36,000 in ND280
- All using 1mm Kuraray Y11(200) WLS fibre
 - Glued into the bar or coupled through an air gap
- Read-out via <u>customised Hamamatsu MPPC</u> (SiPM) (S10362-13-050C)
 - First time used 64,500 SiPMs
 - Overall failure rate is 0.5%

667 APD pixels (each

Enlarged sensitive area 1.3x1.3 mm²

INGRID

- On-axis detector
- Beam direction and rate stability monitor
- Day-by-day measurements

- 11 tracking scintillator planes per module (placed perpendicular to beam direction)
- 24 horizontal and 24 vertical bars per plane
 - Bars in a plane are glued to each other
- Each bar is 1203 mm long with a 50x10 mm² cross section
- On one end readout. Other end is mirrored
- Fibre coupled to scintillator through air gap

ND280 complex

- Sub-detectors in 0.2T magnetic field:
 - Tracker:
 - Fine grained detectors (FGD)
 - Time-projection chambers (TPC)
 - Electromagnetic calorimeter (ECal)
 - Side muon range detector (SMRD)
 - Neutral pion detector (PØD)
- Off-axis detector
- Constrains flux and cross-section uncertainties in the oscillation analysis

ND280: ECal

- Counters with 40x10 mm² cross section
- Three big modules with different lengths of the bars:
 - Barrel, Downstream(1700 bars of length 2000 mm) and PØD (latter is not used in this study)
 - Barrel divided into sub modules: X(6144 bars of length 1520 mm), Y(3072 bars of length 2280 mm), Z(3990 bars of length 3840 mm)
- Bars parallel (Z Barrel) or perpendicular (X,Y Barrel, Downstream) to the beam direction
- Readout from one end of the bar (both ends for Z Barrel and Downstream)
- Air gap coupling between WLS fibre and scintillator

Design and composition is identical to MINERvA bars

ND280:PØD

- Triangular cross section (17 mm height and 33 mm width)
- Horizontal bars are 2133 mm long (134 bars in total)
- Vertical bars are 2272 mm long (127 bars in total)

- Bars grouped into 40 modules(PØDules)
- All bars are placed perpendicular to the beam
- PØDules compose 4 SuperPØDules
- One end signal readout
- Another end is mirrored with vacuum deposition of aluminium
- Same MPPC/fibre coupling design as ECAL and INGRID

ND280:FGD

- Grouped in horizontal(vertical)layers of 192 bar each, perpendicular beam direction
- Two layers make a module (in two FGDs 22 modules in total)
- Within each layer alternate bars read from alternate ends
- Signal readout from one end only, the other end is mirrored
- Air gap coupling between fibre and bar

 Square profile scintillator bars (9.6 mm side, 1864 mm length)

ND280:SMRD

- Vertical (7x175x185 mm²)
 (horizontal (7x167x185 mm²))bars
- Bars grouped by 4(5) in modules located in the magnetic flux return yokes
- In total SMRD consist of 404 modules
- S-shaped WLS fibre for better light collection
- Fibre is glued into the bar with optical glue

Horizontal

counters

- Readout from the both sides of the counter
- Custom endcap at the end of the bar for better coupling between MPPC and fibre

Scintillator bars

- ▶ FGD, ECal, PØD and INGRID counters:
 - Polystyrene co-extruded with TiO₂
 - Doped with 1%PPO and 0.003% POPOP
- SMRD counters:
 - Extruded polystyrene
 - Outer surface etched by chemical reagent to provide reflective layer
 - Doped with 1.5% PTP and 0.01% POPOP
- ▶ PØD, ECal and INGRID bars produced at FNAL (2007-2009)
- FGD bars produced by Celco Plastic Ltd, Surrey, B.C.(2006)
- SMRD slabs produced by Uniplast, Vladimir, Russia (2007-2008)
- PØD, FGD,ECal,INGRID scintillators composition and production method are identical to ones of the MINOS experiment
- PØD bars are totally identical to bars used for MINERvA experiment