Ageing of the scintillator detectors of the T2K off-axis and on-axis detectors, ND280 and INGRID

Maria Antonova on behalf of the T2K collaboration
Instituto de Fisica Corpuscular (UV and CSIC), Valencia, Spain

XIX International Workshop on Neutrino Telescopes
February 2021
Motivation

- Plastic scintillators coupled with wavelength shifting (WLS) fibres and silicon photomultiplier readouts are widely used in various applications
 - Neutrino physics, LHC experiments, medical use detectors etc.
- Long-term operation study is beneficial for understanding detector performance
- The T2K neutrino experiment
 - Collecting data for over 10 years
 - Near detector complex with multiple scintillator bar designs
 - Great source of data for such study!
Leading results for $\nu(\bar{\nu})$ oscillations in appearance/disappearance channels

T2K experiment
Tokai-to-Kamioka long-baseline neutrino experiment

- **Near Detector**
 - "Off-axis" concept: 0.6 GeV peak beam tuned for 1st osc. maximum at SK point

- **Off-axis detector**
 - Constrains flux and cross-section uncertainties in the oscillation analysis
 - ~36,000 scintillator bars
 - Overall ~64,000 SiPMs in ND280 and INGRID

- **On-axis detector**
 - Beam direction and rate stability monitor
 - Day-by-day measurements
 - ~ 9,500 scintillator bars

More on T2K analysis results and performance in talks by J.Walsh, S.Kasetti, M.Guigue etc.
Analysis method

- Light yield (LY) corrected for
 - Attenuation in fibre
 - Detector specific calibration
 - Track angle correction
- Used minimum ionising particle (MIP) like tracks from cosmic rays (ECal, INGRID) or ν interactions (PØD, FGD, SMRD)
- Fitted with Landau-Gauss convolution to get most probable value (MPV)
- MPV distribution over time fitted with linear function
- Due to detector construction current study doesn’t separate between a counter, WLS fibre and SiPM
Ageing analysis results

Linear fit function

\[
\text{Light Yield (Year)} = A - B \times \text{Year}
\]

Exclude first two years data for ND280 detectors due to different calibration

Ageing constants

<table>
<thead>
<tr>
<th>Sub detector</th>
<th>Annual Light Yield Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PØD</td>
<td>1.8 ± 0.2</td>
</tr>
<tr>
<td>FGD</td>
<td>1.2 ± 0.2</td>
</tr>
<tr>
<td>ECal</td>
<td>(1.9 − 2.2) ± 0.1</td>
</tr>
<tr>
<td>SMRD</td>
<td>0.9 ± 0.4</td>
</tr>
<tr>
<td>INGRID</td>
<td>1.6 ± 0.1</td>
</tr>
</tbody>
</table>

- **Typical ageing about 1-2% per year**
- **Good agreement for PØD, ECal, FGD and INGRID (same composition)**
Projected response

- ECal bars with double end readout record lowest MPV
- ECal can be used to project the “worse” future response of ND280 scintillators
- This study uses exponential fit
 - Better describes data on longer time scale

\[\text{Light Yield (Year)} = A \exp \left(-\frac{\text{Year}}{a} \right) \]

- Projection of the light yield up to 2040

- ND280 and INGRID to be used for T2K-II, T2HK

- Response drops by ~50% over 30 years this still remains above corrected charge threshold (5.5PEU)

M.Antonova for T2K collaboration
Separate fibre and scintillator ageing study

- Without attenuation correction
 MIP MPV can be extracted at different point from MPPC
- Fitting this data as a function of time allows to calculate MIP MPV at 0cm from the sensor
 - Removes fibre effect
- Degradation rates (with and without fibre effect) are consistent ~1σ

<table>
<thead>
<tr>
<th>ECal Bar Type</th>
<th>Readout Type</th>
<th>A (PEU)</th>
<th>B (PEU/yr)</th>
<th>Annual Light Yield Reduction (Reference (%))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrel X</td>
<td>Single-ended (mirrored)</td>
<td>38.22 ± 0.49</td>
<td>0.76 ± 0.09</td>
<td>2.07 ± 0.25 (1.98 ± 0.04)</td>
</tr>
<tr>
<td>Barrel Y</td>
<td>Single-ended (mirrored)</td>
<td>37.10 ± 0.46</td>
<td>0.75 ± 0.08</td>
<td>2.11 ± 0.23 (2.02 ± 0.05)</td>
</tr>
<tr>
<td>Barrel Z</td>
<td>Double-ended</td>
<td>27.66 ± 0.18</td>
<td>0.51 ± 0.03</td>
<td>1.91 ± 0.11 (2.15 ± 0.07)</td>
</tr>
<tr>
<td>Downstream</td>
<td>Double-ended</td>
<td>27.84 ± 0.32</td>
<td>0.48 ± 0.05</td>
<td>1.79 ± 0.18 (1.87 ± 0.07)</td>
</tr>
</tbody>
</table>

Double exponential fit to MIP MPV with respect to the distance from sensor

Linear fit for MIP MPV at 0 cm from sensor over 10 years
Summary

- Studied the rate of ageing for the T2K near detector complex scintillators with ~10 years of data collection.

- Observed annual light yield degradation:
 - ECAL, PØD, and INGRID (identical material, all produced at Fermilab) 1.6%-2.2%
 - FGD (Canada) and SMRD (Russia) 1.2% and 0.9% respectively.

- Results are comparable with similar studies by MINOS experiment - 1.2 % per year.

- Inconsistent with MINERvA study (was performed on a smaller time scale) 7.5% per year.

- Results of the study will be used to:
 - Predict long term performance of the detector.
 - Parts of current T2K detector setup will be used for T2K-II/T2HK.
 - Correct signal reconstruction methods.
 - Already applied in reconstruction for INGRID and ND280 detectors.
 - Take into account for new generation of the detectors.
 - SuperFGD, WAGASCI, Baby-MIND in T2K/T2K-II /T2HK.
Thank you!

(Official T2K publication in preparation, stay tuned)
Backup
Scintillator detectors in T2K

- Plastic scintillator bars of various profiles and sizes*
 - ~ 9,500 in INGRID and ~ 36,000 in ND280
- All using 1mm Kuraray Y11(200) WLS fibre
 - Glued into the bar or coupled through an air gap
- Read-out via customised Hamamatsu MPPC (SiPM) (S10362-13-050C)
 - First time used 64,500 SiPMs
 - Overall failure rate is 0.5%

667 APD pixels (each pixel 50x50 \(\mu m^2\))

Enlarged sensitive area 1.3x1.3 mm\(^2\)
INGRID

- 16 Iron/scintillator modules
- 11 tracking scintillator planes per module (placed perpendicular to beam direction)
- 24 horizontal and 24 vertical bars per plane
 - Bars in a plane are glued to each other
- Each bar is 1203 mm long with a 50x10 mm2 cross section
- On one end readout. Other end is mirrored
- Fibre coupled to scintillator through air gap

- On-axis detector
- Beam direction and rate stability monitor
- Day-by-day measurements
ND280 complex

- Sub-detectors in 0.2T magnetic field:
 - Tracker:
 - Fine grained detectors (FGD)
 - Time-projection chambers (TPC)
 - Electromagnetic calorimeter (ECal)
 - Side muon range detector (SMRD)
 - Neutral pion detector (PØD)

- Off-axis detector

- Constrains flux and cross-section uncertainties in the oscillation analysis
ND280: ECAL

- Counters with 40x10 mm² cross section
- Three big modules with different lengths of the bars:
 - Barrel, Downstream (1700 bars of length 2000 mm) and PØD (latter is not used in this study)
 - Barrel divided into sub modules: X(6144 bars of length 1520 mm), Y(3072 bars of length 2280 mm), Z(3990 bars of length 3840 mm)
- Bars parallel (Z Barrel) or perpendicular (X, Y Barrel, Downstream) to the beam direction
- Readout from one end of the bar (both ends for Z Barrel and Downstream)
- Air gap coupling between WLS fibre and scintillator
ND280:PØD

- Triangular cross section (17 mm height and 33 mm width)
- Horizontal bars are 2133 mm long (134 bars in total)
- Vertical bars are 2272 mm long (127 bars in total)

- Bars grouped into 40 modules (PØDules)
- All bars are placed perpendicular to the beam
- PØDules compose 4 SuperPØDules
- One end signal readout
- Another end is mirrored with vacuum deposition of aluminium
- Same MPPC/fibre coupling design as ECAL and INGRID

Design and composition is identical to MINERvA bars.
ND280: FGD

- Grouped in horizontal (vertical) layers of 192 bar each, perpendicular beam direction
- Two layers make a module (in two FGDs 22 modules in total)
- Within each layer alternate bars read from alternate ends
- Signal readout from one end only, the other end is mirrored
- Square profile scintillator bars (9.6 mm side, 1864 mm length)
- Air gap coupling between fibre and bar
ND280: SMRD

- Vertical (7x175x185 mm2) (horizontal (7x167x185 mm2)) bars
- Bars grouped by 4(5) in modules located in the magnetic flux return yokes
- In total SMRD consist of 404 modules
- S-shaped WLS fibre for better light collection
- Fibre is glued into the bar with optical glue
- Readout from the both sides of the counter
- Custom endcap at the end of the bar for better coupling between MPPC and fibre
Scintillator bars

- FGD, ECal, PØD and INGRID counters:
 - Polystyrene co-extruded with TiO$_2$
 - Doped with 1%PPO and 0.003% POPOP

- SMRD counters:
 - Extruded polystyrene
 - Outer surface etched by chemical reagent to provide reflective layer
 - Doped with 1.5% PTP and 0.01% POPOP

- PØD, ECal and INGRID bars produced at FNAL (2007-2009)
- SMRD slabs produced by Uniplast, Vladimir, Russia (2007-2008)
- PØD, FGD, ECal, INGRID scintillators composition and production method are identical to ones of the MINOS experiment
- PØD bars are totally identical to bars used for MINERvA experiment