XIX International Workshop on Neutrino Telescopes

Double beta decay results from the CUPID-O experiment

Emanuela Celi, Gran Sasso Science Institute on behalf of CUPID-0 collaboration

Scintillating cryogenic calorimeters

Scintillating calorimeters operating at ~10 mK \rightarrow double read-out via heat & light.

- **Source** = **detector** \rightarrow high efficiency;
- Excellent energy resolution (<1%);
- Modular design \rightarrow **large scalability**;
- Possibility to study **different isotopes**;
- $LY_{\alpha} \neq LY_{\beta}$ and shape parameters allow **Particle identification;**

Excellent technology to search for **Neutrinoless Double Beta Decay**

See F.Ferroni's talk (link)

NeuTel 2021

- Next generation ton-scale experiment based on enriched Li₂¹⁰⁰MoO₄ scintillating crystals (arXiv:1907.09376);
- $Q_{\beta\beta}(100 \text{ Mo}) = 3034 \text{ keV};$
- Target background ~ 10⁻⁴ counts/keV/kg/y;
- Expected to cover the entire inverted mass hierarchy of neutrino mass;
- Pathfinder experiments:
 - **CUPID-o** \rightarrow enriched Zn⁸²Se crystals; lacksquare
 - **CUPID-Mo** \rightarrow enriched Li₂¹⁰⁰MoO₄ crystals; See P.Loaiza's talk (link)

E. Celi

Cuore Upgrade with Particle IDentification

NeuTel 2021

radioactivity and contaminations of

 30 Zn⁸²Se enriched at 96% in ⁸²Se (cylinder of 5.5 cm high and 4.4 cm in diameter) for a total mass of 7 kg of 82 Se.

36 germanium light detectors (di of 4.4 cm in diameter and 170 µm thick), one face coated with crystal surrounded by 3M VM20

background in the ROI: 103 counts/(keV|kg y)

reflective foil

The first test run re

3 Zn⁸²Se surrounded by VM2002 4 Ge light detectors with ⁵⁵Fe x-ray sources

- Only one module shown on the left picture
- **Operated deep** underground in the Hall C of Laboratori Nazionali del Gran Sasso
- Reproducible results between the 3 crystals and **4 light detectors**

ev]

Enriched Zn⁸²Se - 01

ght Pulses

of

Shape

Phase I results

- Most stringent limit on ⁸2Se ov $\beta\beta$ half-life $T_{1/2}^{0\nu} > 3.5 \times 10^{24}$ y (90% C.I. limit);
- Comprehension of the background in experiments based on scintillating calorimeters;
- Most precise measurement of ⁸2Se 2v $\beta\beta$ half-life: $T_{1/2}^{2\nu} = [8.60 \pm 0.03(\text{ stat })_{-0.13}^{+0.19}(\text{syst })] \times 10^{19} \text{yr}$

E. Celi

5

CUPID-0 phase II

Upgrade

- Removal of reflecting foils \rightarrow tag surface contaminations;
- Muon veto surrounding cryostat \rightarrow confirm the Background Model result;
- Internal copper shield \rightarrow improve the background at low energy;

E. Celi

NeuTel 2021

Thanks for the attention!

