

PERFORMANCE OF THE TIME PROJECTION CHAMBERS WITH RESISTIVE MICROMEGAS OF THE T2K NEAR DETECTOR UPGRADE

Sergey Suvorov On-behalf of the T2K near detector upgrade team

XIX International Workshop on Neutrino Telescopes 25.02.2020

T2K EXPERIMENT

- Accelerator experiment studies precisely neutrino oscillation
 - > 30 GeV proton beam was used to produce ~600 MeV $\nu_{\mu}/\bar{\nu}_{\mu}$ beam

- <u>T2K general talk</u>
- T2K latest results
- ► T2K $\nu_{\mu}/\bar{\nu}_{\mu}$ disappearance

ND UPGRADE: GENERAL IDEA

New detectors will be developed and installed in 2022:

Resistive TPC beamtests

HORIZONTAL TPC

- New field cage with resistive micromegas
 - Made from composites
 - -> minimum material budget
 - -> minimum track distortions

Drift volume MicroMegas Module Frame Cathode

- Resistive micromegas detectors:
 - Share charge between pads -> precise position reconstruction

Better spatial resolution with the same number of pads -> better momentum resolution

RESISTIVE TPC BEAMTEST

2018 test at CERN

- 10% dE/dx resolution
- > 250 μm spatial resolution
- New prototype was build and tested in 2019 at DESY secondary beam
 - 1 5 GeV electron beam
 - > TPC was put into magnet 0T and 0.2T was used (as in T2K)
 - Scan over:
 - Drift distance
 - Momentum
 - Track angle
 - Electronics shaping time
 - Micromegas voltage

TRACK RECONSTRUCTION

- Well-known <u>DBSCAN</u> clustering algorithm was used to find clear straight-forward tracks
- Only through-going straight tracks were accepted for the analysis
- Charge spreading feature is clearly visible by eye

DE/DX RESOLUTION

> The standard "truncated mean" method was used to estimate dE/dx resolution

- dE/dx resolution was measured at ~9%
 - This is one module value -> for two modules we expect ~6%
 - Good performance at all track angles

SPATIAL RESOLUTION

Charge sharing in a cluster:

- Charge spreading provides promise knowledge about track position • To extract position we parametrise charge ratios with Pad Response Function • Charge spreading provides promise knowledge about track position • Track • O₁ • O₂ • O₂ • O₂ • O₂ • O₂ • O₁ • O₂ • O₁ • O₂ • O₂ • O₂ • O₂ • O₁ • O₂ • O₂ • O₂ • O₂ • O₂ • O₁ • O₂ • O
 - For the sloped tracks we looked at "sloped clusters"

0.02

 $x_{_{track}}$ - $x_{_{pad}}$ [m]

0.01

0.03

 Significant improvement was found w.r.t. existing TPCs

Resistive TPC beamtests

-0.02 -0.01

0

-0.03

SUMMARY

- > T2K near detector is going to be upgraded with **TPCs with resistive anode**
- Resistive technology is going to improve TPC performance keeping pad size the same
- Few beam tests were performed:
 - Prototypes were proved to operates successfully
 - dE/dx resolution was measured with similar values as in the existing TPCs
 - > 9% for one module
 - Spatial resolution was measured at much better values to current TPCs
 - 200 μm vs 600 μm for 0°
 - 500 μm vs 1400 μm for 45°

HIGH ANGLE TPC TECHNICAL DETAILS

Parameter	Value
Overall x×y×z (m)	$2.0 \times 0.8 \times 1.8$
Drift distance (cm)	90
Magnetic Field (T)	0.2
Electric field (V/cm)	275
Gas Ar:CF ₄ :iC ₄ H ₄ (%)	95-3-2
Drift Velocity cm/ μ s	7.8
Transverse diffusion (μ m/ \sqrt{cm})	265
Micromegas gain	1000
Micromegas dim. z×y (mm)	340×410
Pad z×y (mm)	10×11
N pads	36864
el. noise (ENC)	800
S/N	100
Sampling frequency (MHz)	25
N time samples	511

2018 CERN BEAM TEST

- TPC prototype with micromegas with resistive foil was tested at CERN beam (PS)
- e, π, p beams were used with the momentum ~1 GeV/c
- Very good performance was observed arXiv:1907.07060

dE/dx resolution from CERN test Spatial resolution from CERN test T2K resolution ~0.6mm ~10% for 36 cm. tracks With resistivity anode we reach 0.25 mm similar to T2K performance Resolution [%] Resolution [µm] 550 12 • Protons Proton Ŧ 500 --- Electron Electrons 11 Ţ 450 Pions - Pion 10 400 350 9 300 250 200 10 20 30 50 70 10 20 30 Distance [cm] Drift distance [cm]

CERN Beam test event example with charge charing between pads

New beam test with optimised resistive MM was done in DESY in June 2019 Data analysis is in progress

100

T2K near detector upgrade

RC MAP

> By comparing signal in leading pad and neighbours the RC value was measured

$$A(t) = A_{peak} \times \exp\left(-\exp\left(t - t_{peak} - a\right)/\tau_1\right) \times \exp\left((t - t_{peak})/\tau_1\right) \times \sin\left((t - t_{peak})/\tau_2\right)$$
$$Q_{pad}(t) = \frac{Q}{4} \left[erf\left(\frac{x_{high} - x_0}{2\sigma(t)}\right) - erf\left(\frac{x_{low} - x_0}{2\sigma(t)}\right) \right] \left[erf\left(\frac{y_{high} - y_0}{2\sigma(t)}\right) - erf\left(\frac{y_{low} - y_0}{2\sigma(t)}\right) \right] \qquad \sigma(t) = \sqrt{\frac{2t}{RC}}$$

- Leading pad affected only by electronics A(t)
- Neighbours convolutes charge spreading with electronics $Q_{pad} \times A(t)$
- RC map was obtained from fit the equations above
 - y_0 was obtained with Pad Response Function (PRF)

SPATIAL RESOLUTION

> With PRF the resolution at the level of 200 um was obtained

DESY TPC proto analysis

Drift distance (mm)

Charge sharing

INCLINED TRACKS

- Prototype was rotated to measure inclined tracks
- PRF method is designed to work with transversal spreading
 - -> works with inclined tracks but new patterns have to be defined

- Works well for 0° and 90°
- To deal with sloped tracks more complicated "clusters" were used

• Example: 60° track

Appropriate cluster to look at transversal spreading

INCLINED TRACKS

The final results for different shaping time:

 With choice of the "right pattern" for each track resolution < 600 um is obtained for all the angles

