

Walter C. Pettus

Tritium Results from Project 8 Phase II

XIX International Workshop on Neutrino Telescopes 23 February 2021

INDIANA UNIVERSITY

Measuring Neutrino Mass

- Neutrino oscillations provide clear evidence for neutrino mass
 - But oscillation measurements only reveal the mass splittings
- Measuring the neutrino absolute mass scale requires a different probe
 - Cosmology: $\sum_{i=1}^{3} m_i$
 - $0\nu\beta\beta$: $\langle m_{\beta\beta}\rangle = \left|\sum_{i=1}^{3} U_{ei}^{2}m_{i}\right|$
 - Endpoint measurements: $m_{\beta} = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 m_i^2}$

Direct Experiments – Endpoint Technique

Direct Experiments – Tritium

Tritium is workhorse of direct mass experiments

$${}^3_1H \rightarrow {}^3_2He^+ + e^- + \overline{v_e}$$

- Endpoint: 18.6 keV
- Half-life: 12.3 yr
- Superallowed decay

Direct Experiment Sensitivity

 Direct mass experiment "observable", m_β, has minimum possible value

•
$$m_{\beta} = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 m_i^2}$$

- KATRIN experiment places most stringent limit
 - Will continue delivering world-leading sensitivity through its operation
 - See talk by T. Lasserre, tomorrow morning
- Project 8 conceived as next-generation experiment to mass range allowed under inverted ordering

Challenges for Future Experiments

- Statistical sensitivity to m_β scales as ~1/N^{1/4}
 - Existing detector technology reached limit of scalability

Challenges for Future Experiments

- Statistical sensitivity to m_β scales as $\sim 1/N^{1/4}$
 - Existing detector technology can't scale
- Irreducible systematics associated with molecular final states at ~100 meV

Project 8 Experiment

- A phased tritium beta endpoint experiment
- Employs novel Cyclotron Radiation Emission Spectroscopy (CRES) technique

Cyclotron Radiation Emission Spectroscopy (CRES)

Harness frequency-energy relation for relativistic electrons

8

CRES Fundamentals

observation of single trapped electron

- High power bins are single electron signal
- Slow chirp of cyclotron radiation loss
- Abrupt collisional loss off residual gas
- Electron born in trap

$$f_c = \frac{1}{2\pi} \frac{eB}{(m + E_{kin})}$$

CRES Fundamentals

observation of single trapped electron

Frequency-based measurement

- Excellent energy resolution achievable
- Source is detector
 - Transparent to own microwave radiation
 - No electron transport
- Differential spectrum technique
 - Increased statistical efficiency

Machine Learning Applications

Track-finding application well suited to machine learning techniques

- Track classification using SVM
 - see also arXiv:1909.08115
 - New J. of Physics, 2020
- Track identification using CNN
 - Work in progress
- Locust simulation framework
 - see also arXiv:1907.11124
 - New J. of Physics, 2019

Waveguide Experimental Concept

APS / Alan Stonebraker

^{83m}Kr Measurements – Resolution

- Use ^{83m}Kr to demonstrate technique, characterize apparatus
 - Monoenergetic conversion electrons at 18, 30, 32 keV

- Achieved resolution of 2.0 ± 0.5 eV (FWHM)
 - For high-resolution "shallow-trap" data
- Instrumental resolution surpasses natural linewidth of 2.8 ± 0.1 eV (of 17.8 keV line)
- Low-energy features well-described by model
 - Accounts for scattering off residual gas, shakeup/shakeoff features

^{83m}Kr Measurements – Statistics

• Use ^{83m}Kr to demonstrate technique, characterize apparatus

- "Deep trap" configuration employed for tritium run
 - Sacrifices resolution in favor of higher statistics
 - See also A. Ashtari Esfahani et al., Phys. Rev. C 99 (2019) 055501
- Lineshape model still represents data
- Magnetic field swept to study efficiency across region of interest

Tritium Beta Endpoint Measurement

- Extensive Kr data allows thorough characterization of systematics
- Three month tritium run taken to accumulate statistics

- Preliminary endpoint result:
 - $E_0 = 18559.4^{+24.9}_{-24.7} \,\mathrm{eV}$
- No background events observed
 - $B < 3 \times 10^{-10} \text{ eV}^{-1} \text{s}^{-1} (90\% \text{ C. I.})$

Where Next? Phase III

~Five year R&D program in critical technology demonstrations

Free Space CRES Demonstrator

Atomic Trap Demonstrator

See Juliana Stachurska's talk this morning

16

Phase IV – Putting Together the Pieces

Framework developed for investigating sensitivity of ultimate experiment

 See arXiv:2012.14341 (A. Ashtari Esfahani et al. 2020)

Achieving 40 meV sensitivity requires

- Multi m³·yr effective exposure
- High flux atomic tritium source
- ~0.1 eV resolution
- 10⁻⁷ field uniformity

With potential to independently measure hierarchy

Conclusions

- CRES established as promising technique for next generation neutrino mass experiment
 - Also other physics applications
- Phase II operations complete
 - Systematics investigated through ^{83m}Kr measurements
 - "High-statistics" tritium dataset collected
- Work ongoing to key technology demonstrators towards 40 meV experiment

Project 8 Collaboration

ψ

JG

- Indiana University Walter Pettus
 - Johannes Gutenberg University, Mainz

Razu Mohiuddin, Ben Monreal, Yu-Hao Sun

Case Western Reserve University

- Sebastian Böser, Christine Claessens, Martin Fertl, Alec Lindman, Christian Matthé, Rene Reimann, Florian Thomas
- Karlsruhe Institute of Technology Thomas Thümmler
- Ŀ Phir
- Kareem Kazkaz Massachusetts Institute of Technology
 - Nicholas Buzinsky, Joseph Formaggio, Mingyu Li, Junior Pena, Juliana Stachurska, Wouter Van de Pontseele
- Pacific Northwest National Laboratory

Lawrence Livermore National Laboratory

- Maurio Grando, Xueying Huyan, Mark Jones, Noah Oblath, Malachi Schram, Jonathan Tedeschi, Mathew Thomas, Brent VanDevender
- ۲
- CfA

Yale

- Pennsylvania State University Luiz de Viveiros, Andrew Ziegler Smithsonian Astrophysical Observatory
 - Shep Doeleman, Jonathan Weintroub
- University of Washington
 - Ali Ashtari Esfahani, Peter Doe, Elise Novitski, Hamish Robertson, Leslie Rosenberg, Gray Rybka, David Sweigart
- Yale University
 - Karsten Heeger, James Nikkel, Luis Saldaña, Penny Slocum, Pranava Teja Surukuchi, Arina Telles, Talia Weiss

This work is supported by the US DOE Office of Nuclear Physics, the US NSF, the PRISMA+ Cluster of Excellence at the University of Mainz, and internal investments at all institutions.