

The University of Manchester

Recent Neutrino Cross Section Results from MicroBooNE

Krishan Mistry, on behalf of the MicroBooNE Collaboration

19 Feb 2021

Growing Interest in ν -Ar Cross Sections

- A number of current and future neutrino oscillation experiments are employing Liquid Argon Time Projection Chambers (LArTPCs)
 - → Short Baseline Neutrino (SBN) Program
 - → Deep Underground Neutrino Experiment (DUNE)
- Measurements of the ν -Ar cross section directly feed into these experiments:
 - → Allow us to develop models that are capable of describing neutrino interaction data on argon

Testing Models II BOONE

- We can test models of neutrino interactions on argon by studying the outgoing particles and their kinematics
- Targeted channels can probe different physics

Testing Models In BooNE

- We can test models of neutrino interactions on argon by studying the outgoing particles and their kinematics
- Targeted channels can probe different physics

 No requirements on the additional particles reconstructed with the outgoing lepton

19 Feb 2021

Testing Models II BOONE

- We can test models of neutrino interactions on argon by studying the outgoing particles and their kinematics
- Targeted channels can probe different physics

19 Feb 2021

reconstructed with

the outgoing lepton

• Targeted channels can probe different physics

Testing Models

19 Feb 2021

6

K Mistry

• Targeted channels can probe different physics

Testing Models

19 Feb 2021

the outgoing lepton

7

19 Feb 2021

Our Physics Probe: LArTPC

- LArTPCs are well equipped to do cross section physics and study the particles from a neutrino interaction
 - \rightarrow Low detection thresholds
 - \rightarrow 4 π acceptance
 - → Precise calorimetric information
- Lets see how they work...

Neutrino interacts with the argon inside the TPC volume and produces daughter particles

µBooNE

19 Feb 2021

Charged daughter particles ionize and excite the argon

MicroBooNE

- 85 tonne active volume LArTPC at Fermilab
 - \rightarrow Stable operation since 2015
- 3 planes of wires (vertical, +60°, -60°)

 \rightarrow 3 mm wire spacing

- 32 PMTs
- Sits in two neutrino beams:
 → BNB (on-axis) <Ev_µ> = 800 MeV
 → NuMI (off-axis) <Ev_e> = 650 MeV

µBooNE

JINST 12 P02017 (2017)

MicroBooNE Event Display

candidate Proton candidate Proton candidate

Wire Number (BNB beam direction)

μBooNE

Time

(drift direction)

Bragg Peak

Proton

Muon candidate

BNB DATA : RUN 5211 EVENT 1225. FEBRUARY 29, 2016

19 Feb 2021

K Mistry 15

Colour scale is proportional to

the amount of

ionization

Proton

candidate

19 Feb 2021

ν_{μ} CC QE-Like and ν_{μ} CC 0π Np

<u>Eur. Phys. J. C 79 673 (2019)</u> Phys. Rev. Lett. 125, 201803 (2020)

Phys. Rev. D 102, 112013 (2020)

19 Feb 2021

What physics can we study with low proton thresholds?

- Protons at low momenta give us access to new information about nuclear effects:
 - → Nucleon-nucleon correlations e.g. 2 particle 2 hole (2p2h)
 - → Final State Interactions (FSI)
- LArTPCs are able to push these thresholds down and explore new regions of phase space
- Protons are identified by a Bragg peak in last 30 cm of a track

LArTPCs MicroBooNE: 300 MeV/c

ArgoNeuT: 200 MeV/c Phys. Rev. D 90, 012008 (2014) Other Detector Types **T2K: 500 MeV/c** Phys. Rev. D 98, 032003 (2018)

MINERvA: 450 MeV/c Phys. Rev. D 99, 012004 (2019)

μBooNE

dQ/dx = charge deposited per distance **Residual range** = distance from end of track

ν_{μ} CCQE-Like Cross Section

- First extraction of ν_{μ} -Ar CCQE-like cross section using a surface LArTPC
 - → **Proton** momentum and angle
 - → Muon momentum and angle
 - \rightarrow Calorimetric measured energy and Q^2
- $\approx 84\%$ purity CC 1p 0π
- $\approx 20\%$ efficiency
- Good agreement with the models except at very forward muon scattering angles

 $\chi^2/N_{d.o.f.}$ Nom. GENIE: **33.8/7**

 $\chi^2/N_{d.o.f.}$ Nom. GENIE (cos θ <0.8): 7.3/6

μBool

19 Feb 2021

19 Feb 2021

Measurement of the cross section as a function of :

→ **Proton** momentum and angle

 ν_{μ} CC 0π Np (N \geq 1)

- \rightarrow Muon momentum and angle
- → Muon-proton opening angle
- 71% purity, 29% efficiency
- Generators show reasonable agreement in proton momentum and angle
- Lowest bin in proton momentum has never been seen before
 - → Region where FSI and 2p2h are dominant
 - → Test modelling of nuclear effects in generators

µBooNE

21

K Mistry

ν_{μ} CC 0π Np (N \geq 1)

- Large over-prediction at forward-going angles for the muon
 - Consistent with CC inclusive and CCQE-like measurements
- New models improve the agreement, but not completely

Phys. Rev. D 102, 112013 (2020)

$v_e + \bar{v}_e CC$ Inclusive

arXiv:2101.04228 [hep-ex]

19 Feb 2021

Electron-Photon Separation

- Able to demonstrate the first fully automated discrimination of electron and photon induced electromagnetic (EM) showers in a LArTPC
- Utilize the energy loss per cm (dE/dx):
 - **Electrons**: dE/dx near the start of a EM-shower is a minimum ionizing particle (MIP) ~ 2 MeV/cm →I
 - **Photons**: dE/dx near the start of a EM-shower is twice a MIP from the $e^{-/}e^+$ pair produced ~ 4 →I MeV/cm

K Mistry

24

µBooNE

Photon

Cross Section Measurement

- First $v_e + \bar{v}_e$ measurement using the NuMI beam from MicroBooNE
 - → 214 selected events
- Final selection purity of 39% and efficiency 9%
- Total cross section is in agreement with the GENIE v2, GENIE v3 and NuWro generators
- Next generation of analyses in progress using improvements to simulation
 - → Significantly reduced cosmic backgrounds (largest contribution in this analysis)
 - → Reduced uncertainties, improved purity and efficiency
 - → Coming soon: differential cross section in variables such as the outgoing lepton energy!

For more details Marina's <u>flash talk</u> on this measurement earlier today!

19 Feb 2021

µBooNE

arXiv:2101.04228 [hep-ex]

Many more measurements coming!

- MicroBooNE is starting to ramp up its cross section program
 Jix cross section publications to date and many more in the works!
- New analyses use a tuned version of GENIE v3
 - Tuned CCQE and CCMEC models to T2K u_{μ} CC 0π data MICROBOONE-NOTE-1074-PUB

→I

- Good progress on measurements include:
- $\rightarrow \nu_{\mu} \text{ CC inclusive } \frac{\text{MICROBOONE-NOTE-1069-PUB}}{\text{See Wenqiang's } \frac{\text{flash talk}}{\text{today } \circ}}$
- $\rightarrow \nu_{\mu} CC \pi^{0}$
- $\rightarrow \nu_{\mu} \text{ CC } 1\pi^{\pm}$
- $\rightarrow \nu_{\mu}$ CC coherent π^+
- $\rightarrow \nu_{\mu} CC 0\pi 2p$
- $\rightarrow \nu_{\mu} \ CC \ 0\pi \ 1p$ Single Transverse Variables (STV)
- $\rightarrow \nu_{\mu} \text{ CC } 0\pi \text{ Np } \text{STV}$
- $\rightarrow \nu_{\mu}$ CC kaon production <u>MICROBOONE-NOTE-1071-PUB</u>
- $\rightarrow \nu_{\mu} \text{ CC } 0\pi 0.1 \text{ p}$

- $\rightarrow \nu_{\mu}$ CC η production
- \rightarrow ν_{μ} NC π^{0} / ν_{μ} CC π^{0} ratio

- $\rightarrow \nu_{\mu} \text{ NC } 1p_{\text{MICROBOONE-NOTE-1067-PUB}}$
- → ν_{μ} CC hyperon production (NuMI)
- → ν_{μ} CC inclusive (NuMI)
- → ν_e CC inclusive (NuMI)
- $\rightarrow \nu_e \text{ CC } 0\pi \text{ Np } (\text{NuMI})$

Summary

- Cross section measurements of v-Ar interactions will allow us to develop models that describe v-Ar interaction data
- Recent results from MicroBooNE
 - Hints of mis-modelling in the prediction of high momentum, forward going muons
 - → Able to study protons at low momenta, 300 MeV/c
 - → First measurement of the v_e-Ar cross section using the NuMI beam at MicroBooNE
 - → Demonstrate a fully automated electron photon separation using the dE/dx of an EM-shower
- Many new measurements coming soon!

µBooNE

19 Feb 2021

Thank You

MiniBooNE anomalous excess:

- Mark Ross-Lonergan
- 😂 <u>Hanyu Wei</u>
- Andrew Mogan

Astrophysics and BSM Capabilities in MicroBooNE:

💈 <u>Pawel Guzowski</u>

LArTPC detector characterization, R&D:

😒 <u>Maya Wospakrik</u>

19 Feb 2021

K Mistry 28

MANCHESTER

Extras

µBooNE

MANCHESTER 1824

29

K Mistry

Signal Definitions

ν_{μ} CC QE-Like

- 1 muon
 - → p_{μ} >100 MeV/c
- 1 proton
 - → > 300 MeV/c

u_{μ} CC 0 π Np (N \geq 1)

- 1 muon
 - → p_μ>100 MeV/c
- At least 1 proton

 → 300 < p_p < 1200 MeV/c
- No pions

µBooNE

Phys. Rev. D 102, 112013 (2020)

30

K Mistry

CCQE-Like Cross Section

• Across all kinematic variables, agreement is improved if forward muon angles are excluded

CCQE-Like Cross Section Model Comparisons

- Nominal: GENIE v2.12.2. Bodek-Ritchie Fermi Gas, Llewellyn-Smith CCQE model, empirical MEC model, Rein-Sehgal resonant and coherent scattering model, "hA" FSI model
- hA2015: GENIE v2.12.2 with a more recent "hA2015" FSI model
- Alternative: GENIE v2.12.10. Local Fermi Gas, Nieves CCQE model, Nieves MEC model, KLN-BS resonant and BS coherent scattering models, and hA2015 FSI model
- v3.0.6: GENIE v3.0.6. Same model configuration as Alternative model, with hA2018 FSI model

Forward-Angle Bin: A Consistent Story **BOONE**

- All three compare to the same GENIE models
 - → Cross comparison

 ν_{μ} CC Inclusive Inclusive Some deficit

 u_{μ} CC 0π Np More exclusive Turnover in data u_{μ} CC QE-Like Even more exclusive Even more deficit

Eur. Phys. J. C 79 673 (2019) Phys. Rev. Lett. 125, 201803 (2020) K Mistry 33

MICROBOONE-NOTE-1069-PUB

19 Feb 2021

Phys. Rev. D 102, 112013 (2020)

Improvements to Simulation

- Major improvements to the detector simulation in upcoming analyses
 - Includes the simulation of induced charge effects on neighbouring wires
 - → Expect drastically reduced detector systematics for future analyses
- Example here shows the improvement for the v_{μ} CC inclusive

Source	Uncertainty	
	Previous Analysis	This Analysis
C Detector response	16.2%	3.3%
Cross section	3.9%	2.7%
Flux	12.4%	10.5%
Dirt background	10.9%	3.3%
Cosmic ray background	4.2%	-
POT counting	2.0%	2.0%
CRT	N/A	1.7%
Total Sys. Error	23.8%	12.1%
Statistics	1.4%	3.8%
Total (Quadratic Sum)	23.8%	12.7%

MICROBOONE-NOTE-1075-PUB JINST 13 P07006 (2018) JINST 13 P07007 (2018)

19 Feb 2021

K Mistry 34

Nucleon-Nucleon Correlations **HBOONE**

- Neutrino can interact with a correlated pair of nucleons inside the nucleus
 - → Meson Exchange Current (MEC)
 - → Short Range Nucleon-Nucleon Correlations (SRC)
- As a result, we get two proton emission (or more!)
 - → "2 particle 2 hole" or 2p2h
 - → Final state is different from the traditional QE interaction, 1l 1p, state

Final State Interactions (FSI)

- Nucleons from the *v*-Ar interaction can re-scatter while propagating through the nucleus
 - → Charge exchange
 - → Elastic scattering
 - \rightarrow Absorption
 - → Pion Production
- The resulting particles seen in the detector are different to the initial interaction
 - → Scales with nucleus size
 - → Impacts final particle momenta and particle multiplicities

19 Feb 2021

K Mistry 36

NuMI Flux at MicroBooNE MBOONE

- NuMI is off axis to MicroBooNE (side and top view)
 - → Neutrinos can reach MicroBooNE with angles ranging from 8
 120 deg
 - → Majority of selected neutrinos come from target ~8 deg in the $v_e + \bar{v}_e$ measurement presented in this talk

BNB and NuMI Flux at MicroBooNE HBOONE

- BNB Flux at MicroBooNE peaked around 1 GeV (on-axis)
- NuMI flux at MicroBooNE covers a wide range of energies (off-axis)

