Hunting for Glashow Resonance with **PeV Neutrino Telescopes**

$\bar{\nu}_e$ e

Qinrui Liu **University of Wisconsin-Madison**

with Guo-yuan Huang JCAP 03 (2020) 005 [1912.02976]

XIX International Workshop on Neutrino Telescopes Feb 22nd, 2021

Neutrino Flavors

Neutrinos measured on Earth with some measured flavor composition

Qinrui Liu

- The production mechanism and propagation effect affects the flavor composition.
- Measuring the flavor composition of highenergy astrophysical neutrinos on Earth is important to pin down the physics.

XIX NeuTel

2

Neutrino Flavor Measurement in Experiments

Cascade ~ NC all flavor / CC ν_e

Fraction of ν_e [CeCube [2011.03561]

- HESE with ternary topo Best fit: 0.20 : 0.39 : 0.4 \star Global Fit (IceCube, AP Inelasticity (IceCube, Pl $\cdots 3\nu$ -mixing 3σ allowed reg

Qinrui Liu

"Double-Bang" ~ CC ν_{τ}

ology ID	$\nu_e: \nu_\mu: \nu_\tau \text{ at source} \to \text{ on Earth:}$
42	$\bullet 0:1:0 \to 0.17 : \ 0.45 : \ 0.37$
PJ 2015)	• $1:2:0 \rightarrow 0.30 : 0.36 : 0.34$
RD 2019)	$\land 1:0:0 \to 0.55 : 0.17 : 0.28$
gion	\diamond 1:1:0 \rightarrow 0.36 : 0.31 : 0.33

• Challenging to distinguish flavors Blind to neutrino and anti-neutrinos

XIX NeuTel

Glashow Resonance

 10^{-30} $\bar{\nu}_{e}$ can be disentangled with resonant interactions 10^{3} 10^{-32} $\sigma^{CC}_{
u_{e/\mu}N}$ $\sigma_{
u N}^{NC}$ δ 2 10⁻³⁴ δ 6.3 PeV 80.38 GeV 511 KeV CC $\bar{\nu}_e e^- \to W$ 10^{7} 10^{-36} S. Glashow Phys. Rev. 118 (1960) 316-317 10^{9} 10^{-38} 10^{4} 10^{6} $1()^{2}$ $E_{\nu} \,[{\rm GeV}]$

$$(\bar{\nu}_e + e^- \to W^- \to X$$

$\bar{\nu}_{\rho}$ Glashow Resonance

Glashow Resonance

$\bar{\nu}_{\rho}$ Glashow Resonance **Typical source flavor scenarios + standard mixing**

Qinrui Liu

Source → Earth		
$(f_{\nu_e}, f_{\bar{\nu_e}}, f_{\nu_{\mu}}, f_{\bar{\nu_{\mu}}}, f_{\bar{\nu_{\mu}}}, f_{\nu_{\mu}}, f_{$	$(f_{\bar{\nu}_{\tau}})_S \rightarrow (f_{\bar{\nu}_e}, f_{\bar{\nu}_e}, f_{\bar{\nu}_{\mu}}, f_{\bar{\nu}_{\mu}}, f_{\bar{\nu}_{\tau}}, f_{\bar{\nu}_{\tau}})_{\oplus}$	$ar{ u}_e$ fra
• $pp \rightarrow \pi^{\pm}$	$(1,1,2,2,0,0) \rightarrow (1,1,1,1,1,1,1,1)$	~1
• $pp \ \mu$ damped	$(1,1,2,2,0,0) \rightarrow (1,1,2,2,1.8,1.8)$	~1
• $p\gamma \rightarrow \pi^+$	$(1,0,1,1,0,0) \rightarrow (3.6,1,3,2,3,1.8)$	~7
• $p\gamma \mu$ damped	$(0,0,1,0,0,0) \rightarrow (1,0,2,0,1.8,0)$	~(
 Neutron decay 	$(0,1,0,0,0,0) \rightarrow (0,1,0,0.4,0,0.4)$	~5

 $\bar{\nu}_{e}$ fraction can be used to differentiate the production mechanism in the source and explore new physics.

Glashow Resonance

Detection of Glashow Resonance

Cascade in IceCube

Qinrui Liu

BR~67%

Hadronic shower is the "golden" detection channel

Glashow Resonance

More Resonant Events in IceCube?

- Large branching ratio
- Good Energy resolution $\sim 15\%$
- Interaction vertex in the detector
- Angular resolution ~ 10 degree

Qinrui Liu

BR~11 % for each flavor

Alternative channel

- Smaller branching ratio
- Energy resolution $\sim 200\%$
- vertex can be ~km away from detector
- Good angular resolution < 0.5 degree

High-energy starting events (HESE)

3 cascades with deposited energies in PeV: 1.04 PeV, 1.14 PeV, 2 PeV.

Unlikely to be Glashow resonance

Qinrui Liu

PeV events in IceCube

Through-going muon events (TGM)

2 tracks with reconstructed muon energies in PeV: 4.5 PeV 1.2 PeV.

Uncertainties in energy reconstruction

Is there any resonant event in TGM?

Glashow Resonance

Neutrino flux when 1km away from the detector

Qinrui Liu

Neutrino Flux in Earth

- Mean free paths at 6.3 PeV: $\lambda_{\bar{\nu}_e e}^{GR} \simeq 30$ km; $\cos \theta \sim 0.04$, $\lambda_{\nu N}^{CC} \simeq 4 \times 10^3$ km; $\cos \theta \sim -0.35$.
- Enhanced cross sections -> large absorption below horizon, undetectable.
- Southern Sky suffer from large amount of atmospheric muons.
- Signals are expected to appear around horizon.

- Excess expected in area near horizon.
- No high-energy TGM event in 10% excess contour.
- PeV TGM events are unlikely to be $\bar{\nu}_e$ resonant events.

TGM in IceCube

Background: CC induced μ + atmospheric μ

× TGM events in Northern Sky with reconstructed energy > 200 TeV

Glashow Resonance

TGM from Glashow Resonance

- ~0.28 events within 10% contour in 10 yrs with TGM spectrum. ~3 events in total.
- Similar conclusion can be drawn in other underground detectors. e.g. ANTARES, Baikal-GVD, KM3NeT, P-ONE.

Qinrui Liu

• A factor of ~4 increase in IceCube-Gen2. ~ 1 event within 10% contour is expected in 10 yrs.

11

- Another possibility: τ channel, EAS detectors.
- Large attenuation in Earth. Observe neutrinos with smaller interacting lengths.
 - Detecting Earth-skimming neutrinos near horizon.
 - Detecting Mountain-penetrating neutrinos with a mountain as a target.
- Radio detectors are sensitive energies beyond PeV, e.g. GRAND, PUEO...
 - Cherenkov/fluorescence detectors are preferred.

12

Elevated telescopes on mountaintops/ balloons/satellites

e.g. Ashra NTA, CHANT, **BEACON, Trinity, POEMMA**

Qinrui Liu

- Excess in very narrow area near horizon
- ~0.24 events within 10% contour in 10 yrs with TGM spectrum.

Glashow Resonance

Mountain-Penetrating Neutrinos

- Using Earth as the target always suffers shrink of detection volume.
- Resolvable if interaction length are satisfactory -> a mountain acts as the target.

e.g. Ashra NTA, TAMBO

Qinrui Liu

Mountain-Penetrating Neutrinos

- Array of Cherenkov detectors can enlarge the geometric aperture, $A_{\rm geo}^{\tau} \simeq 60 \, {\rm km}^2 \cdot {\rm sr} \rightarrow \sim 0.3$ events per year with TGM spectrum.
- More detailed simulation is needed.

Qinrui Liu

promising

- The composition of flavors embeds important information of neutrino production and propagation.
- Glashow resonance provides possibility to disentangle $\bar{\nu}_e$ from the total neutrino flux experimentally.
- For TGM in IceCube, a 20% excess induced by Glashow resonance is expected near horizon. Searching for cascades is still the best window.
- For detection of Earth-skimming neutrinos, a similar conclusion holds to TGM in IceCube.
- Detection of mountain-penetrating neutrinos is potentially sensitive to the Glashow resonance signature.

Backup Slides

HE Astrophysical Neutrino Flux

Qinrui Liu

$$eV^{-1}cm^{-1}s^{-1}sr^{-1}$$

TGM (Northern Sky Track 9.5 yr) [ICRC2019, 1017]

 $\gamma_{astro} = 2.28^{+0.08}_{-0.09}$

HESE 7.5 yr

IceCube [<u>2011.03545</u>]

 $\gamma_{astro} = 2.87^{+0.20}_{-0.19}$

