

FACULTY OF SCIENCE Kepler Center for Astro and particle Physics

JUNO OSIRIS Calibration Systems

Flash talk Tobias Sterr for the JUNO OSIRIS group Neutel conference 2021 @ online

The OSIRIS Detector

- Due to the ambitious sensitivity goals of JUNO, a high purity level of the liquid scintillator (LS) is necessary
 - The Online Scintillator Internal Radioactivity Investigation System (OSIRIS) was introduced to monitor the purity of this LS
- Main goal: monitoring of the U-Th chains via Bi-Po events ->
 - sensitivity of 10^{-16} g/g of U and Th for solar measurements
 - sensitivity of 10^{-15} g/g of U and Th for Inverse Beta Decay measurements in JUNO
- A contamination measurement of ¹⁴C and ²¹⁰Po will be possible
- After its main purpose is fulfilled, OSIRIS offers a unique chance for low-budget high precision measurements of other topics like pp neutrinos, etc.

The OSIRIS Detector

- Light detection system of OSIRIS:
 - 76 newly developed iPMTs (PMTs with all readout and supply electronics included into base)
 - Two independent calibration systems: Automated calibration unit and Laser calibration system

Laser Calibration System

- For time and charge calibration: distributed fiber system, driven by picosecond Laser (pulse length ≈ 80ps)
- 24 diffusor capsules distributed in inner volume and muon Veto
- Laser system for time and charge calibration:
 - \succ Timing alignment ≈ 25ps (1σ)

≻ Charge calibration accuracy \approx 7 x 10⁻³ p.e.

Automated Calibration Unit (ACU)

- ACU features three calibration sources:
 - High activity source (CS-137, Zn-65, Co-60) ∑≈1kBq
 - Used for vertex reconstruction
 - Low activity source (K-40), ≈ 0.2-1Bq
 - Remains in the detector as continuing reference
 - Pulsed LED with diffusor ball encapsuled in acrylics
 - Redundant to Laser system
- Of axis calibration due to large variation of detector response along central axis
- Simulation to extrapolate remaining detector
- The ACU is a spare part from the Daya Bay collaboration, modified to the needs of OSIRIS

Expected Calibration Performance

- ACU source calibration:
 - ➢ Relative source position accuracy: 0.5 cm
 - Relative precision of energy scale: uncertainty of 0.2% - 0.5% @ 1MeV
- ACU LED calibration:
 - Timing alignment <= 1ns</p>
 - > Charge calibration accuracy \approx 0.01 p.e.

Typical measured calibration spectra of the ACU (simulated). Fits of this plot are used for the estimation of the energy calibration uncertainty.

Thank you.

Contact:

Tobias Sterr

Kepler Center for Astro and Particle Physics, Eberhard Karls Universität Tübingen Auf der Morgenstelle 14 72076 Tübingen, GERMANY

Phone: +49-7071-29-76276 Mail: Tobias-Richard.Sterr@uni-tuebingen.de

