

Università Roma Tre & INFN

(on behalf of the JUNO Collaboration)

26 February 2021

JUNO & JUNO-TAO

Jiangmen Underground Neutrino Observatory:

- a "medium-baseline" (53km) reactor neutrino experiment, in construction in China (data taking foreseen in 2023)
- Goals : Measure the neutrino mass hierarchy (NMH) + oscillation parameters + astroparticle and rare processes

Several talks already for JUNO in this conference

→ more details given there!

Reactor $\bar{\nu}_e$ input flux

- Current models cannot provide a reliable reference spectrum;
- Existing measurements have not enough resolution to reveal fine structures (though unlikely to follow oscillation pattern...)
- However, a near detector can reduce model dependences of the unknown fine structures → more robust measurement

LS

Acrylic Sphere

SS Structure

VETO PMTs

Connecting Bars

Supporting Legs

JUNO & JUNO-TAO

Taishan Antineutrino Observatory (TAO) is a satellite exp. of JUNO a ton-level, state-of-the-art liquid scintillator detector with high energy resolution.

More than a near detector for JUNO:

- Measure reactor neutrino spectrum w/ sub-percent E resolution.
 - 1. Provide a reference spectrum for JUNO:
 - $\frac{\sigma_E}{E} \sim 3\%$ (like JUNO) + 10 X statistics would be enough (and could be achieved with LS+PMT)
 - 2. Provide a benchmark measurement to test nuclear databases:
 - Highest possible energy resolution ($\frac{\sigma_E}{E} < 2\% \rightarrow SiPMs$);
 - 3. Increase reliability in isotopic IBD yields;
 - 4. Can improve nuclear physics knowledge;
 - 5. Reactor monitoring, sterile neutrino, etc.

JUNO-TAO: location

- Nuclear Power Plant in Taishan city in Guangdong province;
- 53 km from the JUNO experiment;
- Two cores currently in operation (other two cores might be built later);
- All reactors are European Pressurized Reactor (EPR) 4.6 GW power.
- TAO detector:
 - ~30 m from core 1:
 - Outside of the concrete containment shell of the reactor core:
 - In a basement, 9.6 m underground
 - Access via a $1.4 \times 2 \times 2.7$ m³ lift

Far core contributes about 1.5% to the total antineutrino rate in TAO

Р

JUNO-TAO detector overview

- 2.8 ton Gd-LS in a spherical vessel;
- 1-ton Fiducial Volume
- 10 m² SiPM with 50% PDE:
- operated at -50°C to reduce Dark Noise;
- Light Yield: ~4500 p.e./MeV;
- 50% efficiency mainly due to neutron tagging.

From Inner to Outside:

- 1. Gd-LS:
- 2. Acrylic vessel;
- SiPM and support (Cu shell);
- Buffer liquid, LAB: (rad. shield)
- Cryogenic vessel (SS + insulation);
- 1.2 m water; HDPE shielding;
- Active Muon veto.

w.r.t. JUNO:

- Coverage of photon sensors: 75% (with PMTs) $\rightarrow \sim$ 95% (with SiPMs)
- Photon detection efficiency: ~27% (with PMTs) \rightarrow ~50% (with SiPMs)
- Smaller dimension \rightarrow less γ absorbed. \rightarrow p.e. statistics increased by 40%.

Signal

- inverse β -decay (IBD) in the Gd-doped LS
- $\bar{\nu}$ signature: e^+e^- prompt scintillation + delayed n capture signal
- $E_{v_e} \approx E_{e^+} + (m_n m_p m_e)$ neglecting K_n O(10 keV)
- neutron capture by Gd (87%):
 - several γ's for ~8 MeV;

Signal energy spectrum:

in the fiducial volume

• Average capture time is about 30 µs with 0.1% loaded Gd by mass.

- N_P: target number of p;
- L: distance from reactor;
- $\sigma(E_{\nu})$: IBD cross section;
- $\phi(E_{\nu})$: reactor $\bar{\nu}_e$ flux;

ROMA TI

- ϵ : detection efficiency (~0.5):
 - 1. Gd capture fraction: 0.87
 - 2. 7–9 MeV energy cut on delayed signal: ~0.6 efficiency
 - 3. Less relevant contributions:

prompt energy cut, prompt-delayed coincidence and muon veto.

 $S(E_{\nu}) = \frac{N_{p}\epsilon\sigma(E_{\nu})}{4\pi L^{2}}\phi(E_{\nu})$ $\rightarrow \text{TAO will detect ~2000 IBD events/day} \xrightarrow{[1]{9}{15}]{2}} \xrightarrow{235_{U}} \xrightarrow{235_{U}}$

Backgrounds

Muons rate in TAO hall (-9.6m): ~70Hz

 Muon veto: 20 µs veto signal by Top Veto or Water Tank → less than 10% dead time. Natural radioactivity, major source of prompt events:

- From concrete walls: use passive shielding
- Careful material selection (PCBs in SiPMs and electronics).
- Fast neutrons: recoil proton (prompt) + thermalized neutron capture (delayed) → mimic IBD

Muon-induced backgrounds:

- Muon veto time cuts most of the fast neutrons.
- **Delayed-like signals**: neutron captures not rejected by the muon veto (rate ~0.2 Hz)
 - mimic IBD signal if in coincidence with a prompt from radioactivity
- Cosmogenic radioactive isotopes; ⁹Li and ⁸He can decay emitting a prompt e + delayed n

IBD signal	2000 events/day	
Muon rate	$70 \ \mathrm{Hz/m^2}$	
Fast neutron background before veto	1880 events/day	
Fast neutron background after veto	< 200 events/day	
Singles from radioactivity	< 100 Hz	
Accidental background rate < 190 events/c		
$^{8}\mathrm{He}/^{9}\mathrm{Li}$ background rate	$\sim 54~{\rm events/day}$	

The JUNO-TAO detector: details and status

ROMA TRE

INFN

XIX International Workshop on Neutrino Telescopes

Stainless Steel Tank and Acrylic Vessel

- -50°C inside the SST, surrounded by a layer of PU insulator
- Air-tight environment for the liquid scintillator
- Support for internal components + Automatic Calibration
 Unit + overflow tank.
- Shipped in parts and welded in the lab
- Ready for bidding

ROMA TR

SST

Acrylic Vessel

- Contains the GdLS inner diameter: 1.8 m; thickness: 20 mm.
- 3 pieces to be bonded together on site
- Upper chimney connecting to the overflow tank;
- Bottom chimney connects to the GdLS outlet.
- Design finished.

Copper Shell

- Support for SiPMs tiles and their readout electronics
- Support for acrylic vessel;
- Support for cooling pipes (dissipate the heat of SiPMs and electronics) and cable routing.
- Design of the structure:
 - 2 pieces bolted onsite (for transportation)
 - oxygen-free copper (TU2):
 - good thermal conductivity;
 - Good mechanical strength;
 - low background.

Construction to start soon:

- Manufacturing process confirmed
- Raw material purchased
- welding technique to be qualified

~5x5 cm² SiPM tiles arrangement optimized \rightarrow 4024 tiles, ~94% coverage

Liquid Scintillator

- GdLS at -50°C to lower SiPMs dark noise;
- transparency at -50°C: A.L. >10m;
- light yield at -50°C: ~4500 p.e./MeV (including SiPMs PDE, coverage and A.L.);
- long-term stability:
- safety (we are in a Nuclear Power Plant...).

Recipe:

LAB + 0.1%Gd + 3g/L PPO + 2mg/L bis-MSB + 0.5% DPnB

- Linear Alkylbenzene (LAB) as solvent (JUNO, Daya Bay) + DPnB as co-solvent (for low T);
- PPO as fluorescent
- bis-MSB as wave-shifter
- Recipe improved

ightarrow preparing for mass production

SiPM

- photodetectors with efficiency higher than PMTs needed for the desired energy resolution → SiPMs
- PDE correlates with Dark Noise and correlated noise → find the optimal tradeoff
- R&D with different companies almost finished

Parameter	Specification	Comments	
PDE	>=50%	at 400 nm	
Dark counts rate	<100 Hz/mm ²	at -50°C	
Correlated noise	<20%	cross-talk and afterpulses	
Uniformity of V_{bd}	<10%	to avoid bias voltage tuning	
SiPM size	>= 6 x6 mm ²	for simplicity and high coverage	
SiPM tile size	~50x50 mm ²	reduce number of channels	
SiPM coverage in a tile	>90%	not included in PDE	

Low-background materials are needed for PCBs (for both tiles and electronics) to meet the overall requirement on radioactivity rate <100 Hz.

	CuFlon	Arlon NT	Pyralux	Aramid
	[mBq/Kg]	[mBq/Kg]	[mBq/Kg]	[mBq/Kg]
²²⁶ Ra	1,4	-	2,6	
²²⁸ Th	1,2	100	1,4	260
40K	140	1000	4	1000

JUNO

Frontend Readout

- Noise: equivalent noise charge <0.1 p.e.;
- Charge resolution: <=15%;
- Timing: Fast τ_1 ~4 ns in GdLS \rightarrow time resolution <1 ns;
- Dynamic range: <15 p.e./cm² on SiPMs for events in the FV
 → 1-375 p.e (or 1-12 p.e.) depending on the number of channels/tile
- Power consumption: inside the cryostat <3 kW (ΔT below ±0.5°C)
- Radio-purity: same consideration as for the PCB hosting the SiPM.

Two options are being developed (decision before the summer)

design ready, prototypes made, well characterized, working at low-T

Discrete option: 1 channel/tile

- Easy, reliable and robust option with commercial IC
- Series/parallel connection to handle SiPMs capacitance.
- 4 different Transimpedance Amplifier.
- Two gain stages to reduce TIA instability at high gain.
- ADC in the FEC board

ROMA TRI

ASIC option: 32 (or16) channels/tile

- Integrated ADC for charge measurement
 - 10 or 12-bit quantization resolution
- Integrated TDC for time measurement
 - 200 ps bin-sized event timestamps

- p.e. yield: ~4500 p.e./MeV → p.e. statistics contribution to resolution:
- $\frac{\sigma_E}{E} = \frac{0.015}{\sqrt{E[MeV]}}$
- At high energies, the smearing due to kinetic energy of the recoiling neutron in IBD becomes relevant.
- LS quenching effect relevant at low energies (simulated but preliminary and model dependent)
- Other (minor) contributions to energy resolution:
 - Charge resolution: assumed 15% for one SiPM channel. 2800 to 4000 channels in the range 1-10 MeV;
 - Cross talk: assumed to be 10%;
 - Dark noise: rate of about 250 kHz/mm² at room T. Reduced to 100 Hz/mm² at -50 °C. Readout time window ~1 μs.

Shielding and Veto system

• Shielding:

- 1 m HDPE (top);
- 1.2 m water, divided in 3 parts (side);
- 10 cm Lead (bottom).
- Top Veto (99% efficiency):
 - 4 layers Plastic Scintillators
 - (2 m (L) * 10 cm (W) * 1.5 cm (H))
 - fiber+ SiPMs;
- Side Veto (99% efficiency):
 - Water Cherenkov + 300 JUNO 3-in PMTs ;
- Design optimized with simulation, meet requirements
 - ightarrow further optimization + mechanical design
 - ightarrow design review in the summer

JUNO

Trigger and DAQ

- Full efficiency ($\varepsilon \sim 1$) for $\bar{\nu}_e$ IBD events;
- Suppress SiPMs dark counts (DCR ~1 GHz);
- Suppress other detector-related backgrounds;
- Data throughput < 100 Mbps (limit from network bandwidth at the experimental site).

A **global majority logic** can suppress the DCR down to ~0 with no effect on the signal efficiency.

TDAQ baseline schema:

- Process raw data in a TDAQ system based on high-end FPGA boards
- Write out high-level information (charge, time);
- A global majority (Nhit) trigger is the baseline;
- Include CD, Water Tank and Top Veto in a single DAQ chain;
- CU based on a high-end FPGA:
 - Data collection + Event building;
 - Global majority trigger.

F.Petrucci - 26/02/21 - JUNO-TAO: Status and Prospects

Conclusions and outlook

- JUNO-TAO: ton-level LS detector with sub-percent energy resolution is being constructed
- ~30 m from one core of the Taishan NPP;
- SiPM photodetectors → operate at -50°C
- a lot of challenges for a new concept detector
- Unprecedented energy resolution allows:
 - Reference spectrum for JUN0
 - Nuclear database testing
 - New findings?
- 1:1 prototype this summer @IHEP
 - Mainly to validate CD design + LS study if possible
- Final onsite assembly/installation in late 2022

