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Testing the MiniBooNE LEE

MiniBooNE observed a low-energy
excess (LEE) of CC v_-like events,
predominately below 800 MeV
reconstructed neutrino energy

~4.8¢ significance when combining
all neutrino mode data
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https://agenda.infn.it/event/24250/contributions/130087/

Enter MicroBooNE

MicroBooNE is an 85-ton surface
based Liquid Argon Time Projection
Chamber (LAFTPC) that has been
collecting data in the same neutrino
beam as MiniBooNE since Autumn
2015.

One of its primary® goals is to identify
if the origin of the observed MiniBooNE
Low Energy Excess (LEE) is due to
electrons or photons.

This can be achieved due to LArTPC's
excellent spatial resolution and
calorimetry

"Primary but by no means only, See talks by Marina
Reggiani Guzzo, Wengiang Gu, Krishan Mistry, Pawel
Guzowski and Maya Wospakrik!
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Spatial Resolution: Photon Conversion Distance

LArTPC's are like a digital bubble chamber. In argon
photons travel with a mean free path of ~15cm before
pair converting, and as the photons are neutral this
appears as a distinct gap.

Vertex

e CC z° candidate in BNB data |
BNB DATA : RUN 5370 EVENT 7227. MARCH 10, 2016.
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Calorimetry: Shower dE/dx

Photons producing e'e” pairs tend to deposit twice
the energy per unit length as a single electron
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Example of shower dE/dx for candidate neutrinoevents in the
NuMI beam at MicroBooNE arXivi2101.04228



https://arxiv.org/pdf/2101.04228.pdf
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Photon interpretations of the MiniBooNE excess

Although there are several sources of photons in MiniBooNE, this search is
focusing on NC A radiative decay (A—Ny). Motivation for this is 3-fold:

Events/MeV

e SM process, N0 need to invoke existence of sterile neutrinos
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Photon interpretations of the MiniBooNE excess
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Although there are several sources of photons in MiniBooNE, this search is
focusing on NC A radiative decay (A—Ny). Motivation for this is 3-fold:

e SM process, N0 need to invoke existence of sterile neutrinos

. . " MiniBooNE Collaboration:
e The shape of the A Radiative Decay events agree extremely well with arxiv:2006.16883

the observed low-energy excess, can explain it if the rate were
increased by a factor of ~ x3 from its standard model predictions.
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http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1043-PUB.pdf

Photon interpretations of the MiniBooNE excess

Although there are several sources of photons in MiniBooNE, this search is
focusing on NC A radiative decay (A—Ny). Motivation for this is 3-fold:

. . . . K Abe et al 2019 J. Phys. G: Nucl. Part. Phys. 46 08LTo1
e SM process, N0 need to invoke existence of sterile neutrinos

e The shape of the A Radiative Decay events agree extremely well witl 10 Wang et al. calculation i
the observed low-energy excess, can explain it if the rate were ien sete ST, i ]
increased by a factor of ~ x3 from its standard model predictions 1 | =] T2K Flux (all v, arbitrary unit) I

g = NOMAD 90%CL limit 3
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NC A Radiative Decay in MicroBooNE

In MicroBooNE we are searching NC A radiative events both with a visible proton (1y1p
topology) and without (1yop topology) although in this talk | will be focusing on the
primary 1y1p analysis.

Use Pandora Multi-Algorithm Pattern Reconstruction [Eur. Phys. J. €78, 1. 82 (2018) |
framework to find all candidate neutrino events where there is exactly 1 shower and 1
track which share a common vertex (although shower can be displaced significantly).

Simulation NC A Radiative

(1) Short proton candidate
with Bragg peak

(2) Single EM shower
pointing back to vertex

(3) Clean gap between
proton and shower start
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https://doi.org/10.1140/epjc/s10052-017-5481-6

Topological Selection Stage
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Just asking for the existence of a single
reconstructed track and a shower

At this stage, our signal is massively dominated by
Cosmic, BNB Charged current (CC) v, backgrounds
and Dirt (Neutrino events that interacted outside of
the TPC and scattered in)

Signal-to-background ratio ~ 1:1000

Showing results using a small sample of
unblinded data (0.4x102%° POT). First results will be
with ~17x (First 3 years ) more data, with final
dataset being ~30x what | show today (Full 5 years)




Pre-Selection Stage We can reduce backgrounds by over an order of
magnitude by first implementing a series of
pre-selection cuts to remove the more clear cut

p backgrounds. Examples include:
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Example: NC =z° Rejection BDT

Here only showing example of 1y1p NC nt° rejection
BDT response, showing good modelling of the
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Example: NC =z° Rejection BDT
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Here only showing example of 1y1p NC nt° rejection
BDT response, showing good modelling of the
backgrounds across the entire region of phase space.

The NC n° BDT tries to make use of variables that
would be sensitive to the parent A kinematics or the
missing secondary shower of the ° decay such as
e The reconstructed invariant mass of the
photon-proton pair
e Photon Transverse Momentum

We then place a simultaneous cut on all five BDT
response scores in an effort to maximize the
sensitivity of the analysis to observing NC A Radiative
decay




Post BDT cut, 1y1p Final Selection
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Reminder, Showing results using small
sample unblinded data, full data set is
~30x larger

Observe 2 events with an expectation of 2.6
for the SM scenario.

This targeted BDT approach has resulted in
extremely strong rejection of Cosmics, Dirt,
and CC backgrounds, to the extent they are
no longer a major concern.

By far the dominant background is NC =°
events (~90%) and it's easy to see why by
looking at some events.




NC single photon candidate 1y1p data event

uBooNE

Incoming
neutrino
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NC single photon candidate 1y1p data event NC z° + 1 Proton (2y1p) Candidate data event

uBooNE uBooNE

Incoming

Incoming neutrino
neutrino

2 5 cm MicroBooNE Data, Run 5462 Subrun 14 Event 732 Run 15318 Subrun 159 Event 7958
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NC single photon candidate 1y1p data event

uBooNE

Incoming
neutrino

Topologically indistinguishable from our
single photon signal

Both cases have true photon and a true
proton
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Hypothetical NC z° Event

Y : left the detector!
uBooNE'’ ’

Incoming
neutrino

Run 15318 Subrun 159 Event 7958

Hypothetical: Subleading photon from =°
exits detector before pair converting and is
thus not reconstructed




NC single photon candidate 1y1p data event Hypothetical NC =° Event

uBOONE uBOONE 'ilz : left the detecton:!

Incoming

Incoming neutrino
neutrino

2 5 cm MicroBooNE Data, Run 5462 Subrun 14 Event 732 Run 15318 Subrun 159 Event 7958

There are many ways with which the secondary shower is lost:

Escapes the detector before pair-converting

Highly overlapping with leading shower

Very low energy (< 30 MeV) where reconstruction efficiency is lower
Interference with coincident cosmic rays
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In-Situ NC z° Measurement

2‘Y IP Neutrino

Vertex h Proton Track

I
4

To constrain this dominating background we have utilized
the same BDT based framework to develop a
complementary in-situ high statistics NC #° measurement,
in which both showers were reconstructed

Sneak Preview: See Andrew Mogan's Flash Talk for much
more details [Friday 26" 11:45 @ Room 1 Link]

Highest-statistics
sample of NC z°
events in a LArTPC!
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Reconstructed n° Invariant Mass [GeV]
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https://agenda.infn.it/event/24250/contributions/130341/

Events

The NC z° Constraint

Side-by-side fit to 1y and 2y selections indirectly constraints NC z° background

Scale our prediction up
to the full dataset (~30x).
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Events

The NC z° Constraint

Side-by-side fit to 1y and 2y selections indirectly constraints NC z° background

120

100

80

60

40

20

L] 1x SMNC A Radiative 10.30 [ x2 SM NC A Radiative (LEE) 20.60
- ] NC 1n°Coherent 0.00 [ NC 17° Non-Coherent 55.66

m ] NC2+n°0.00 [ cCv, 1m0 091

[ ] BNB Other6.97 [ CC vy/¥, Intrinsic 1.61

| B Dirt 0.00 [B=== Cosmic Data 0.00

|- 444544 Flux, XS & Detector Systematics : 96.05

\Illlllllllll

1ylp 12.25e20 POT
y ficroBooNE Simulation

11p

IIIIIIIIIIIIIIIIIIIIY.

Events

200

160

140

120

100

] 1x SMNC A Radiative 12.25
E ] NC 1n° Coherent 16.24

E ] NC2+n°2.69 [ CCv, 1n°24.85

I [ BNBOther47.26 [ CC v/ Intrinsic 20.66
- I Dirt 11.39 E===] Cosmic Data 19.80

[ 44444« Flux, XS & Detector §/ystematics 132211

[ x2 SMNC A Radiative (LEE) 24.50
[ NC 10 Non-Coherent 142.48

10p 12.25e20 POT
MicroBooNE Simulation

W .42
(7777777774

V22727777772
A A AFA

0.5 0.6 0.7
Reconstructed Shower Energy [GeV]



Events

The NC z° Constraint

Side-by-side fit to 1y and 2y selections indirectly constraints NC z° background
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Events

The NC z° Constraint

Side-by-side fit to 1y and 2y selections indirectly constraints NC z° background
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Events

The NC z° Constraint

Events

Side-by-side fit to 1y and 2y selections indirectly constraints NC z° background
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Effectively reduces the
— systematic uncertainty on the
signal selections by a factor of
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Current Status of uBooNE's Single-Photon Search

Analysis is frozen. 1y selections have been
validated with current small unblinded data
sets, and analysis of ~x17 larger signal blind
sidebands is ongoing (first 3 years of data).

Projected sensitivity to the the NC A radiative
process:

~40X more sensitive measurement than
current world's best limit in this energy
range (T2K [J._Phys. G: Nucl. Part. Phys. 46 08LTo1l)
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H— E.Wang et al. 1311.2151
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[ SSEssndsesazsiesdasmaddesEnanad First 3 years data

Full 5 years data

MicroBooNE Simulation
Preliminary
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https://iopscience.iop.org/article/10.1088/1361-6471/ab227d/pdf

Conclusions

Utilizing the unique capabilities of LAFTPC technology,
MicroBoone has developed a full end-to-end analysis
searching for Neutral Current A radiative decays.

Projected to produce a world-leading constraint on the
SM NC A radiative process, never directly measured in
neutrinos before!

Worlds largest selection of NC z° in a LAfTPC provides a
strong constraint to the primary backgrounds that remain
in the selection.

Currently wrapping up studies of signal-blind sidebands,
and are on the cusp of unblinding the signal box for the
first result with 3 years of data (6.9x10%° POT).

More information on this analysis can be found in the
MicroBooNE single-photon public note:
MICROBOONE-NOTE-1087-PUB,

& > Mark Ross-Lonergan 23" February 2021

25 ¢m

1p1p candidate NC A radiative event
MicroBooNE Data, Run 5462 Subrun 14 Event 732

2y1p candidate NCx° event
Run 15318 Subrun 159 Event 7958



https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1087-PUB.pdf
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Slide from: Georgia

MiCl‘OBOONE Run PeriOdS Karagiorgi, Neutrino 2020

Start of MicroBooNE
running, October 2015

Software trigger
at start of Run 1

Partial CRT

during Run 2
Full CRT during Run 3
and onward

Lower e lifetime
/. during Run 4
Brand-new, preliminary results shown today
span data sets from this period (6.9x10?° POT)
Run 1, 1.7x10%° POT Run 2, 2.7x10%° POT Run 3, 2.6x10%° POT Run 4, 3.2x10%° POT Run 5, 2.2x10%° POT

A
v

Over its 5-year run, uBooNE has collected data
corresponding to 12.25x10%° POT (past quality cuts)
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Example: Cosmic Rejection BDT
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Shower Conversion Distance
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Sense Wires

The MicroBooNE Detector | Y, ¥ T

Liquid Argon TPC

MicroBooNE is an 89-ton surface
based Liquid Argon Time Projection
Chamber (LArTPC) that has been
collecting data in the same Fermilab /
BNB since Autumn 2015,  ihod
One of its primary goals is to

definitively identify if the origin of the

observed MiniBooNE Low Energy S/
Excess (LEE) is due to electrons or &/
photons.

TS O R R R R N
< 1 1 \ 1 \ e 1 X X
|| 1 - || 1 || 1. - E

This can be achieved due to LArTPC's Drift Electric Field /4.
. . / 4 ////«/,f
excellent spatial resolution and Ya®

. % ; [~
calorimetry # ie

Y wire plane waveforms

Figure 2 in JINST 12 P02017

For further details and the working principles of the MicroBooNE Detector
itself see Ralitsa’s talk
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MicroBooNE Cosmic Ray Tagger

https.//arxiv.org/pdf/1901.02862.p
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Theory Prediction, Single Photon production

v(it)+ N - v(@)+ N+, 1)

is defined by the set of Feynman diagrams for the hadronic current shown in Fig. 1.

Z i Z Y /z Y

T

N/ N,AN* \N N/ N,AN* \N
N/\N

FIG. 1. (Color online) Feynman diagrams for the hadronic current of NC photon emission considered in Ref. [18]. The first
two diagrams stand for direct and crossed baryon pole terms with nucleons and resonances in the intermediate state: BP and
CBP with B = N, A(1232), N*(1440), N*(1520), N*(1535). The third diagram represents the t-channel pion exchange: mEz.

30 12
1 68% CL [ 68% CL
24 our model | | our model
w [ no N* i .
2 v-mode 2
w 1w
6 L
httpS //arXIVorg/pdf/1407 6060 pdf 02 04 06 08 1 12 14 02 04 06 08 1 12 14

EO%GeV) ESqGeV)

FIG. 4. (Color online) EX® distributions of total NC events for the v (left) and 7 (right) modes. Our results, given by the
red solid lines are accompanied by grey error bands corresponding to a 68 % confidence level. The curves labeled as “no N*”
show results from our model without the N*(1440), N*(1520) and N*(1535) contributions. The “MB” histograms display the
MiniBooNE estimates [20]. Aqe denotes the size of the ESF bin in the experimental setup.
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MiniBooNE
In situ Pio constraint -

Events
1
|

n° reconstructed mass

—— data |

——— prediction

600 [—

400—

200—

1.5

Data/MC

1

~~~~~~~~~~ A i s
0.5 |l I
& 200 50
reconstructed mass [MeV]
FIG. 7: An absolute comparison of the 7° reconstructed mass
distribution between the neutrino data (12.84 x 10*° POT)
and the simulation for NC 7° events (top). Also shown is the
ratio between the data and Monte Carlo simulation (bottom).
The error bars show only statistical uncertainties.
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Single-Photon candidate event in data

nuBooNE
R&
BNB Data

Run: 5845
Subrun: 30

Event: 1507

This data event scores very
highly as signal in tailored
background rejection BDT's

Overall topology, kinematics
and calorimetry match that of a
NC A radiative decay extremely
well

However.,...
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Single-Photon candidate event in data (Likely NC z° background)

nuBooNE
R&
BNB Data

Run: 5845
Subrun: 30
Event: 1507

Mark Ross-Lonergan 23 February 2021

Missed 2"
» pointing

to vertex

]

e
]

Zooming out:

Missed secondary shower
makes it much more likely
to be NCx° event

Coincidence intersecting
cosmic muon increased
probability that second
shower was tagged as a
delta-ray off the cosmic
muon




NC single photon candidate 1y1p data event Hypothetical NC =° Event

uBOONE uBOONE 'ilz : left the detecton:!

Incoming

Incoming neutrino
neutrino

2 5 cm MicroBooNE Data, Run 5462 Subrun 14 Event 732 Run 15318 Subrun 159 Event 7958

Key takeaway: NC 7° events outnumber true single-photon NC A radiative
events by over 100-to-1 and there are many ways for the z°'s to mimic our
signal
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