

Measurements and Model Validations of Inclusive ν_{μ} CC Events with the Wire-Cell Reconstruction at MicroBooNE

Wenqiang Gu BNL

on behalf of the MicroBooNE

Event Selection of Inclusive Charged-Current ν_{μ} Interactions

	Efficiency	Purity	Cosmic- μ rejection
Trigger	1	5e-5	1
Generic- ν detection	80%	65%	7e-6
$oldsymbol{ u}_{\mu}$ CC (Fully & Partially Contained)	<mark>64%</mark>	93%	7e-7

- Achieved excellent cosmic- μ rejection
 - ▶ Wire-Cell^[1] reconstruction: arXiv:2101.05076
 - ▶ Generic-v detection: arXiv:2012.07928, arXiv:2011.01375
- The high-statistics event selection allows for high-precision multi-dimensional cross-section measurements
 - MICROBOONE-NOTE-1095-PUB

Validation of Neutrino Energy Modeling: E_{ν} to E_{ν}^{rec}

- Neutrino energy modeling is crucial to neutrino oscillation measurements
 - Search for v_e low-energy excess at BNB @ H. Wei, Feb 23rd
- Key challenge: understanding ν-Ar cross section as a function of energy
 NuPRISM: use a series of off-axis measurements to constrain cross-section modeling
- A new idea based on the calorimetric energy reconstruction: validation of E_{had}^{rec} after applying constraints of the muon kinematics distribution
 - Common systematics (e.g., flux) are cancelled, providing a more stringent validation of crosssection modeling

Conditional Covariance ^[3]

$$\mu_{X,Y} = \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \qquad \Sigma_{X,Y} = \begin{pmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{YX} & \Sigma_{YY} \end{pmatrix}$$

$$\mu_{Y|X} = \mu_Y + \Sigma_{YX} \Sigma_{XX}^{-1} (X - \mu_X)$$

$$\Sigma_{Y|X} = \Sigma_{YY} - \Sigma_{YX} \Sigma_{XX}^{-1} \Sigma_{XY} \text{ (reduce uncer.)}$$

Wengiang Gu

Model Constraint with Conditional Covariance

• Excess observed at low hadronic energy

Mis-modeling of missing energy in the hadron final states?

- No more excess at low hadronic energy after constraints with E_{μ}^{rec} , $\cos \theta_{\mu}^{rec}$
 - ▶ Significant reduction in overall systematic uncertainties (20% → 5%)
 - ▶ No sign of mis-modeling of the **hadron missing energy**

Model Constraint with Conditional Covariance

• Excess observed at low hadronic energy

Mis-modeling of missing energy in the hadron final states?

- No more excess at low hadronic energy after constraints with E_{μ}^{rec} , $\cos \theta_{\mu}^{rec}$
 - Significant reduction in overall systematic uncertainties (20% → 5%)
 - No sign of mis-modeling of the hadron missing energy

Model Comparison in High Dimension

• High-statistics v_{μ} CC allows for multi-dimensional cross-section measurements

Summary

- A high-performance inclusive v_{μ} CC selection (93% purity, 64% efficiency) has been achieved using Wire-Cell reconstruction at MicroBooNE
- New technique with conditional covariance matrix allows for more stringent validations of the cross-section modeling and neutrino energy reconstruction for (oscillation and cross section) measurements
 - Examination of hadronic energy distribution after constraining muon kinematics explains the observed low-hadronic-energy excess
- High-statistics v_{μ} CC event selection (\approx **225k expected for 1.2E21 POT**) for multi-dimensional differential cross-section measurements
 - Stay tuned for the nominal flux-averaged cross section (Wiener-SVD unfolding arXiv:1705.03568)

References

[1]: Wire-Cell Software Package for LArTPC: https://lar.bnl.gov/wire-cell/

[2]: Neutrino Interaction Model and Uncertainties for MicroBooNE Analyses. <u>MICROBOONE-NOTE-1074-PUB</u>

[3]: Eaton, Morris L. (1983). Multivariate Statistics: a Vector Space Approach. John Wiley and Sons. pp. 116–117. ISBN 0-471-02776-6