

Supernova Model Discrimination with Hyper-Kamiokande

Jost Migenda (they/them) For the Hyper-Kamiokande Collaboration

Based on arXiv:2002.01649 & 2101.05269

Neutrino Telescopes 2021

19th February 2021

Hyper-Kamiokande

Hyper-Kamiokande

- Physics goals:
 - + δ_{CP} & other v oscillation parameters
 - Proton decay (reaching ~10³⁵ years)
 - Solar & supernova neutrinos
 - ... and much more!
- Updated design report published in 2018 arXiv:1805.04163
- Funding approved & excavation started in 2020
- 350+ members from 19 countries

Supernova Observations with Hyper-Kamiokande

- HK offers both large statistics and event-by-event energy information
 - Order of magnitude larger than Super-K, DUNE, JUNO
 - IceCube: more events, but no energy information for individual events
- 54k–90k events for SN at 10 kpc
 - ~3k events for SN in LMC
- Directionality: ~1° (via ve-scattering)
- Most sensitive to $\overline{\nu}_e$

sntools: A Supernova Event Generator

- Modern cross-sections for main interaction channels
 - Inverse beta decay full result from arXiv:astro-ph/0302055
 - Electron scattering arXiv:astro-ph/9502003
 - 16O CC arXiv:1809.08398,1807.02367
- Modular & easily extensible (e.g. LS, WbLS & THEIA)
- Open source: <u>https://github.com/JostMigenda/sntools</u>
- Accepted by JOSS (to be published as DOI:10.21105/joss.2877 soon)

Data Sets

- Used sntools to generate 1000 data sets each for
 - 5 different SN models
 - Normal & inverted mass ordering
 - N=100, 300 events per data set
- Consider 20–520 ms post bounce only
 - Accretion phase is most interesting physically (late times: PNS cooling, similar across models)
 - Can include advanced 3D models, where computing time limitations only allow simulating <1 s

Supernova Models

Model	Mass		events at 10 kpc*	N=100	N=300
Totani arXiv:astro-ph/9710203	$20~M_{\odot}$	1D	19716	140 kpc	81 kpc
Nakazato arXiv:1210.6841	$20~M_{\odot}$	1D	17978	134 kpc	77 kpc
Couch arXiv:1902.01340	$20~M_{\odot}$	1D	27539	166 kpc	96 kpc
Vartanyan similar to arXiv:1804.00689	$9~M_{\odot}$	2D	10372	102 kpc	59 kpc
Tamborra arXiv:1406.0006	$27~M_{\odot}$	3D	25021	158 kpc	91 kpc

* during 20–520ms after core bounce, assuming Normal Ordering

Models by different groups, using various approximations → telling models apart can help understand the explosion mechanism

Analysis

- Performed full detector simulation & reconstruction for all data sets
- Applied cuts:
 - E_{reco} > 5 MeV (eliminate low-E backgrounds)
 - Vertex inside fiducial volume (avoid higher backgrounds & worse reconstruction near walls)
 - → Effectively background-free in 500 ms interval
- Each data set contains 100 (300) events originally
 → typically over 80% remaining after trigger and cuts

Analysis

$$L = \ln \mathscr{L} = \sum_{\text{evt } i} \ln \left(\frac{d^2 N(t_i, E_i)}{dt \ dE} \right)$$

- Each data set contains events (t_i, E_i)
- Per data set: calculate unbinned likelihood L for each SN model
 - Based on Loredo & Lamb, Annals N. Y. Acad. Sci. 571 (1989) p. 601–630
 - Extended to include multiple interaction channels
- Use $\Delta L = L_A L_B$ to determine whether model A or B better describes any given data set

Model ComparisonNormal ordering
N=100 evt/dataset

 \rightarrow Good model separation with just N=100 events

Pairwise Comparison of SN Models

Model Identification, N=100

		Identified as	;			
	Normal	Couch	Nakazato	Tamborra	Totani	Vartanyan
True model	Couch	795	57	122	12	14
	Nakazato	33	961	3	1	2
	Tamborra	84	0	853	33	30
	Totani	4	0	16	979	1
	Vartanyan	0	1	17	3	979

		Identified as	5			
	Inverted	Couch	Nakazato	Tamborra	Totani	Vartanyan
True model	Couch	960	35	4	1	0
	Nakazato	8	992	0	0	0
	Tamborra	0	1	858	21	120
	Totani	3	0	20	977	0
	Vartanyan	0	2	105	1	892

Tamborra model similar to Couch (Vartanyan) model in Normal (Inverted) Ordering. Other models are separated well!

Model Identification, N=300

		Identified as	;			
	Normal	Couch	Nakazato	Tamborra	Totani	Vartanyan
True model	Couch	982	2	16	0	0
	Nakazato	1	999	0	0	0
	Tamborra	16	0	980	2	2
	Totani	0	0	0	1000	0
	Vartanyan	0	0	0	0	1000

		Identified as	5			
	Inverted	Couch	Nakazato	Tamborra	Totani	Vartanyan
True model	Couch	999	1	0	0	0
	Nakazato	0	1000	0	0	0
	Tamborra	0	0	974	1	25
	Totani	0	0	0	1000	0
	Vartanyan	0	0	8	0	992

Higher statistics reduce random fluctuations & improve accuracy.

One more thing...

- Hyper-K is still ~6 years away & SN simulations will make progress in the meantime
- Can we use this approach to determine progenitor properties?
- Use different Nakazato models
 - 13, 20, 30 M_{sol} with solar metallicity (z=0.02)
 - 20 M_{sol} with
 SMC metallicity (z=0.004)

Progenitor Properties, N=300

		Identified as				* lower metallicity (z=0.004)
	Normal	13 M _{sol}	$20 \ M_{sol}$	$20 {\rm ~M_{sol}}^*$	$30 \ M_{sol}$	
nodel	$13 \ M_{sol}$	878	61	61	0	
True n	$20 \ \mathrm{M_{sol}}$	17	944	39	0	
	$20 {\rm ~M_{sol}}^*$	74	75	850	1	
	$30 \ M_{sol}$	0	0	0	1000	

		Identified as			
	Inverted	13 M _{sol}	$20 \ M_{sol}$	20 M _{sol} *	$30 \ M_{sol}$
True model	$13 \ M_{sol}$	866	78	56	0
	$20 \ M_{sol}$	64	848	88	0
	$20 \ \mathrm{M_{sol}}^*$	53	88	859	0
	$30 \ M_{sol}$	0	0	0	1000

Different progenitors simulated with the same code. If SN simulations converge, HK can be used to study the progenitor!

Conclusions

- Hyper-Kamiokande has unique capabilities for detecting supernova neutrinos
 - High event rate and event-by-event energy information

Can tell SN models apart even at ~100 kpc distance

- ≥80% able to identify true model with 100 evts
- ≥97% accuracy with 300 evts
- If mis-ID: only by very narrow margin → can at least narrow down list of possible models
- Chance to identify progenitor properties

Other HK talks at NeuTel 2021: MPMT modules (A. Ruggeri, 25/02) Overview (F. Di Lodovico, 25/02)

Backup Slides

N=100, Normal Ordering , 2070

N=300, Normal Ordering , 2070

N=100, inverted Brdering , 2070

N=300, Inverted Ordering / 2070

Event Rate & Mean Energy of 5 Models

