Exploring second oscillation maximum at DUNE

Jogesh Rout

Jawaharlal Nehru University
New Delhi, India

With Sheeba Shafaq (JNU), Mary Bishai (BNL) and Poonam Mehta (JNU)

XIX International Workshop on Neutrino Telescopes, Feb 26, 2021
Current status and open questions in neutrino oscillation physics

Parameter best-fit-value 3σ range 1σ uncertainty
\[\begin{array}{llll}
\theta_{12} \text{ [Deg.]} & 34.3 & 31.4 - 37.4 & 2.9% \\
\theta_{13} \text{ (NH) [Deg.]} & 8.58 & 8.16 - 8.94 & 1.5% \\
\theta_{13} \text{ (IH) [Deg.]} & 8.63 & 8.21 - 8.99 & 1.5% \\
\theta_{23} \text{ (NH) [Deg.]} & 48.8 & 41.63 - 51.32 & 3.5% \\
\theta_{23} \text{ (IH) [Deg.]} & 48.8 & 41.88 - 51.30 & 3.5% \\
\Delta_{21}^m \text{ [eV2]} & 7.5 \times 10^{-5} & [6.94 - 8.14] \times 10^{-5} & 2.7% \\
\Delta_{31}^m \text{ (NH) [eV2]} & +2.56 \times 10^{-3} & [2.46 - 2.65] \times 10^{-3} & 1.2% \\
\Delta_{31}^m \text{ (IH) [eV2]} & -2.46 \times 10^{-3} & [-2.37 - 2.55] \times 10^{-3} & 1.2% \\
\delta \text{ (NH) [Rad.]} & -0.8\pi & [-\pi, 0] \cup [0.8\pi, \pi] & - \\
\delta \text{ (IH) [Rad.]} & -0.46\pi & [-0.86\pi, -0.1\pi] & - \\
\end{array} \]

Table-1: Global fit to neutrino data.

P. de Salas, et al. (2020), 2006.11237

- Mixing phenomena in the leptonic sector is characterized by three angles ($\theta_{12}, \theta_{23}, \theta_{13}$), two mass-squared differences ($\delta m_{21}^2, \delta m_{31}^2$) and one phase δ_{13} called the Dirac phase.

- Unknowns - Dirac CP phase (δ_{13}), mass hierarchy ($\Delta m_{31}^2 > 0$ or < 0) and octant of θ_{23}

O. Mena and S. Parke, PRD69 (2004) 117301

jogesh.rout1@gmail.com Exploring second oscillation maximum at DUNE
An international mega-science project located in the US

1300 km long accelerator experiment, World’s Most intense wide band neutrino beam

Main goal: to address the issue of CP violation, Mass hierarchy and Octant of θ_{23} more precisely in the leptonic sector
Intrinsic CP asymmetry ($\Delta P_{\mu e}^{CP} = 0.75 \sin \delta$) at 2nd oscillation maxima is \sim3 times larger than at 1st oscillation maxima ($\Delta P_{\mu e}^{CP} = 0.3 \sin \delta$).

Matter effects are more pronounced at 1st oscillation maximum than at 2nd oscillation maximum. So intrinsic versus extrinsic separation is better around 2nd maxima.

To access the second maxima at DUNE, we use a very intense neutrino beam from a multi-MW proton beam.

For precise measurement of the oscillation parameters, we consider the combination of standard CP optimized wide-band beam for CDR DUNE (2015) and the 8GeV 3MW beam (PIP-III SRF linac option) which peaks around second oscillation maxima.
Solid curve for smearing matrices obtained from a fast MC (2015) CDR, Dashed curve for improved energy reconstruction capabilities with Gaussian smearing.
Both the LE combination and LE combination with 2nd oscillation maxima beam can discern the MH for the given amount of exposure.

MH can be deciphered better with improved energy reconstruction capabilities.
Combination of 2nd maxima beam, LE (1.1MW) and LE (2.2MW) improves the sensitivity to θ_{23} octant degeneracy where the contribution mainly comes from the LE beams.

Variation of CP phase $\delta : [-\pi \rightarrow \pi]$ creates the band and the grey shaded region indicates the 1\textsigma bound on θ_{23} from the recent global fit to neutrino data.
Resolution of CP phase (δ) and Jarlskog invariant (J)

\[J = \sin \theta_{12} \cos \theta_{12} \sin \theta_{23} \cos \theta_{23} \sin \theta_{13} \cos^2 \theta_{13} \sin \delta \]
Our results can be summarized as follows

<table>
<thead>
<tr>
<th>Sensitivity to</th>
<th>Nominal case</th>
<th>Improved energy resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPV</td>
<td>76% (79%)</td>
<td>78% (81%)</td>
</tr>
<tr>
<td>MH</td>
<td>Modest improvement</td>
<td>better</td>
</tr>
<tr>
<td>Octant of θ_{23}</td>
<td>Modest improvement</td>
<td>better</td>
</tr>
<tr>
<td>δ resolution</td>
<td>$6^\circ - 15^\circ$</td>
<td>$\sim 6^\circ - 10^\circ$</td>
</tr>
<tr>
<td>J resolution</td>
<td>$6.6 \times 10^{-3}(J = 0.033)$</td>
<td>$3.8 \times 10^{-3}(J = 0.033)$</td>
</tr>
</tbody>
</table>
Thank You
Beamline parameters assumed for our design fluxes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>LE (CPV optimized design)</th>
<th>2^{nd} maxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton beam energy</td>
<td>80 GeV</td>
<td>8 GeV</td>
</tr>
<tr>
<td>Proton Beam power</td>
<td>1.1 MW (PIP-II)/2.2 MW (PIP-III)</td>
<td>3 MW (PIP-III)</td>
</tr>
<tr>
<td>Protons on target (POT) per year</td>
<td>$1.47 \times 10^{21}/2.94 \times 10^{21}$</td>
<td>40.1×10^{21}</td>
</tr>
<tr>
<td>Focusing</td>
<td>2 horns, GA optimized for CPV sensitivity (2015)</td>
<td></td>
</tr>
<tr>
<td>Horn Current</td>
<td>~ 300 kA</td>
<td>~ 300 kA</td>
</tr>
<tr>
<td>Decay pipe length</td>
<td>194 m</td>
<td>200 m</td>
</tr>
<tr>
<td>Decay pipe diameter</td>
<td>4 m</td>
<td>4 m</td>
</tr>
</tbody>
</table>

GA \rightarrow Genetic Algorithm

jogesh.rout1@gmail.com
Exploring second oscillation maximum at DUNE
Low Energy (LE) beam peaks around 1st oscillation maxima.

2nd oscillation maxima beam peaks around 2nd oscillation maxima.

Figure: Events with migration matrices based on fast MC (left) and gaussian smearing (right)