Constraints on neutrino non-standard interactions: From neutrino oscillations to precision cosmology

Yong Du

email: yongdu@itp.ac.cn

XIX International Workshop on Neutrino Telescopes, February 19, 2021

YD, H-L. Li, J. Tang, S. Vihonen, J-H. Yu, arXiv: 2011.14292

YD, J-H. Yu, arXiv: 2101.10475

XIX International Workshop on Neutrino Telescopes

> 18-26 February 2021 Online

* Not to be complete

Overview

Illustration: © Johan Jarnestad/The Royal Swedish Academy of Sciences

* Not to be complete

Overview

* Not to be complete

Overview

Overview

In this talk, I will only focus on neutrino NSIs from an EFT approach

Charge-Current (CC) NSIs: from terrestrial neutrino oscillation experiments (dim-6 SMEFT operators only)

YD, H-L. Li, J. Tang, S. Vihonen, J-H. Yu, arXiv: 2011.14292

Neutral-Current (NC) NSIs: Neff from Planck and CMB-S4 (v-v, v-e, v-γ operators up to dim-7)

CC NSIs

YD, H-L. Li, J. Tang, S. Vihonen, J-H. Yu, arXiv: 2011.14292

YD, H-L. Li, J. Tang, S. Vihonen, J-H. Yu, arXiv: 2011.14292

YD, H-L. Li, J. Tang, S. Vihonen, J-H. Yu, arXiv: 2011.14292

YD, H-L. Li, J. Tang, S. Vihonen, J-H. Yu, arXiv: 2011.14292

NC NSIs

$$\rho_R = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} N_{\text{eff}}\right] \rho_{\gamma}$$

NC NSIs

Dimensions	Operators	Wilson coefficients
dimension-5	$\mathcal{O}_1^{(5)} = \frac{e}{8\pi^2} \left(\bar{\nu}_\beta \sigma^{\mu\nu} P_L \nu_\alpha \right) F_{\mu\nu}$	$C_{1}^{(5)}$
	$\mathcal{O}_{1,f}^{(6)} = \left(\bar{\nu}_{\beta} \gamma_{\mu} P_L \nu_{\alpha} ight) \left(\bar{f} \gamma^{\mu} f ight)$	$C_{1,f}^{(6)}$
	$\mathcal{O}_{2,f}^{(6)} = (\bar{\nu}_{eta}\gamma_{\mu}P_L\nu_{lpha})\left(\bar{f}\gamma^{\mu}\gamma_5f ight)$	$C_{2,f}^{(6)}$
dimension-6	$\mathcal{O}_{3}^{(6)} = \left(\bar{\nu}_{\beta} P_{L} \nu_{\alpha}\right) \left(\bar{\nu}_{\beta'} P_{L} \nu_{\alpha'}\right)^{\clubsuit}$	$C_{3}^{(6)}$
	$\mathcal{O}_4^{(6)} = \left(\bar{\nu}_\beta \gamma_\mu P_L \nu_\alpha\right) \left(\bar{\nu}_{\beta'} \gamma_\mu P_L \nu_{\alpha'}\right)^{\clubsuit}$	$C_{4}^{(6)}$
	$\mathcal{O}_5^{(6)} = \left(\bar{\nu}_\beta \sigma^{\mu\nu} P_L \nu_\alpha\right) \left(\bar{\nu}_{\beta'} \sigma^{\mu\nu} P_L \nu_{\alpha'}\right)^{\clubsuit}$	$C_{5}^{(6)}$
	$\mathcal{O}_1^{(7)} = \frac{\alpha}{12\pi} \left(\bar{\nu}_\beta P_L \nu_\alpha \right) F^{\mu\nu} F_{\mu\nu}$	$C_{1}^{(7)}$
	$\mathcal{O}_2^{(7)} = \frac{lpha}{8\pi} \left(\bar{\nu}_\beta P_L \nu_\alpha \right) F^{\mu\nu} \widetilde{F}_{\mu\nu}$	$C_{2}^{(7)}$
	$\mathcal{O}_{5,f}^{(7)} = m_f \left(\bar{\nu}_\beta P_L \nu_\alpha \right) \left(\bar{f} f \right)$	$C_{5,f}^{(7)}$
	$\mathcal{O}_{6,f}^{(7)} = m_f \left(\bar{\nu}_{\beta} P_L \nu_{\alpha} ight) \left(\bar{f} i \gamma_5 f ight)$	$C_{6,f}^{(7)}$
dimension-7	$\mathcal{O}_{7,f}^{(7)} = m_f \left(\bar{\nu}_\beta \sigma^{\mu\nu} P_L \nu_\alpha \right) \left(\bar{f} \sigma_{\mu\nu} f \right)$	$C_{7,f}^{(7)}$
	$\mathcal{O}^{(7)}_{8,f} = \left(ar{ u}_{eta} i \stackrel{\leftrightarrow}{\partial}_{\mu} P_L u_{lpha} ight) \left(ar{f} \gamma^{\mu} f ight)$	$C_{8,f}^{(7)}$
	$\mathcal{O}_{9,f}^{(7)} = \left(\bar{\nu}_{eta} i \stackrel{\leftrightarrow}{\partial}_{\mu} P_L \nu_{lpha} ight) \left(\bar{f} \gamma^{\mu} \gamma_5 f ight)$	$C_{9,f}^{(7)}$
	$\mathcal{O}_{10,f}^{(7)} = \partial_{\mu} \left(\bar{\nu}_{\beta} \sigma^{\mu\nu} P_L \nu_{\alpha} \right) \left(\bar{f} \gamma_{\nu} f \right)$	$C_{10,f}^{(7)}$
	$\mathcal{O}_{11,f}^{(7)} = \partial_{\mu} \left(\bar{\nu}_{\beta} \sigma^{\mu\nu} P_L \nu_{\alpha} \right) \left(\bar{f} \gamma_{\nu} \gamma_5 f \right)$	$C_{11,f}^{(7)}$

 $\rho_R = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} N_{\text{eff}}\right] \rho_{\gamma}$

Results: NC NSIs comparison

$\mathcal{L}_{\rm NSI}^{\rm NC} = -2\sqrt{2}G_F$	\sum	$\epsilon^{f,P}_{lphaeta}$	$(ar{ u}_lpha\gamma_\mu P_L u_eta)$	$\left(\bar{f}\gamma^{\mu}Pf\right)$
	$\alpha\beta, f, F$	>		

ϵ 's	[103]	[97]	[82]	[83]	[84]	[85]	[90]	[98]	[35]	This wo	ork
					. ,					Planck	CMB-S4
$\epsilon_{ee}^{e,L}$	[-0.010, 2.039]	[-1.53, 0.38]	[-0.07, 0.1]	[-0.05, 0.12]	[-0.03, 0.08]	[-0.036, 0.063]	[-0.017, 0.027] [-0.003, 0.003]	[-0.08, 0.08]	[-0.185, 0.380] [-0.130, 0.185]	[-1.6, 1.44]	[-0.61, 0.46]
$\epsilon_{e\mu}^{e,L}$	[-0.179, 0.146]	[-0.84, 0.84]	-	-	[-0.13, 0.13]	-	[-0.152, 0.152] [-0.055,0.055]	[-0.33, 0.35]	[-0.025, 0.052] [-0.017, 0.040]	[-1.6, 1.44]	[-0.61, 0.46]
$\epsilon_{e\tau}^{e,L}$	[-0.860, 0.350]	[-0.84, 0.84]	[-0.4, 0.4]	[-0.44, 0.44]	[-0.33, 0.33]	-	[-0.152, 0.152] [-0.055,0.055]	[-0.33, 0.35]	[-0.055, 0.023] [-0.042, 0.012]	[-1.6, 1.44]	[-0.61, 0.46]
$\epsilon^{e,L}_{\mu\mu}$	[-0.364, 1.387]	-	[-0.03,0.03]	-	[-0.03, 0.03]	-	[-0.040, 0.04] [-0.010,0.010]	-	[-0.290, 0.390] [-0.192, 0.240]	[-1.6, 1.44]	[-0.61, 0.46]
$\epsilon^{e,L}_{\mu\tau}$	[-0.035, 0.028]	-	[-0.1,0.1]	-	[-0.1, 0.1]	-	-	-	[-0.015, 0.013] [-0.010, 0.010]	[-1.6, 1.44]	[-0.61, 0.46]
$\epsilon_{\tau\tau}^{e,L}$	[-0.350, 1.400]	-	[-0.5,0.5]	-	[-0.46, 0.24]	[-0.16 , 0.110] [0.41, 0.66]	[-0.040, 0.04] [-0.010,0.010]	-	[-0.360, 0.145] [-0.120, 0.095]	[-1.6, 1.44]	[-0.61, 0.46]
$\epsilon_{ee}^{e,R}$	[-0.010, 2.039]	[-0.07, 0.08]	[-1, 0.5]	[-0.04, 0.14]	[0.004, 0.151]	[-0.27, 0.59]	[-0.33, 0.25] [-0.07, 0.07]	[-0.04, 0.06]	[-0.185, 0.380] [-0.130, 0.185]	[-1.6, 1.44]	[-0.39, 0.31]
$\epsilon_{e\mu}^{e,R}$	[-0.179, 0.146]	[-0.19, 0.19]	-	-	[-0.13, 0.13]	-	[-0.236, 0.236] [-0.08, 0.08]	[-0.15, 0.16]	[-0.025, 0.052] [-0.017, 0.040]	[-1.6, 1.44]	[-0.39, 0.31]
$\epsilon_{e\tau}^{e,R}$	[-0.860, 0.350]	[-0.19, 0.19]	[-0.7, 0.7]	[-0.27, 0.27]	[-0.05, 0.05] [-0.28, 0.28]	-	[-0.236, 0.236] [-0.08; 0.08]	[-0.15, 0.16]	[-0.055, 0.023] [-0.042, 0.012]	[-1.6, 1.44]	[-0.39, 0.31]
$\epsilon_{\mu\mu}^{e,R}$	[-0.364, 1.387]	-	[-0.03,0.03]	-	[-0.03, 0.03]	-	[-0.10, 0.12] [-0.006, 0.006]	-	[-0.290, 0.390] [-0.192, 0.240]	[-1.6, 1.44]	[-0.39, 0.31]
$\epsilon^{e,R}_{\mu\tau}$	[-0.035, 0.028]	-	[-0.1,0.1]	-	[-0.1, 0.1]	-	-	-	[-0.015, 0.013] [-0.010, 0.010]	[-1.6, 1.44]	[-0.39, 0.31]
$\epsilon, R \\ \epsilon_{TT}$	[-0.350, 1.400]	-	[-0.5,0.5]	-	[-0.25, 0.43]	[-1.05, 0.31]	[-0.10 , 0.12] [-0.006, 0.006]	-	[-0.360, 0.145] [-0.120, 0.095]	[-1.6, 1.44]	[-0.39, 0.31]

Results: NC NSIs comparison

$\mathcal{L}_{\rm NSI}^{\rm NC} = -2\sqrt{2}G_F$	\sum	$\epsilon^{f,P}_{lphaeta}$	$(ar{ u}_lpha \gamma_\mu P_L u_eta)$	$\left(\bar{f}\gamma^{\mu}Pf\right)$
	$\alpha\beta, f, F$	>		

ϵ 's	[103]	[97]	[82]	[83]	[84]	[85]	[90]	[98]	[35]	This wo	rk
										Planck	CMB-S4
$\epsilon_{ee}^{e,L}$	[-0.010, 2.039]	[-1.53, 0.38]	[-0.07, 0.1]	[-0.05, 0.12]	[-0.03, 0.08]	[-0.036, 0.063]	[-0.017, 0.027] [-0.003, 0.003]	[-0.08, 0.08]	[-0.185, 0.380] [-0.130, 0.185]	[-1.6, 1.44]	[-0.61, 0.46]
$\epsilon_{e\mu}^{e,L}$	[-0.179, 0.146]	[-0.84, 0.84]	-	-	[-0.13, 0.13]	-	[-0.152, 0.152] [-0.055,0.055]	[-0.33, 0.35]	[-0.025, 0.052] [-0.017, 0.040]	[-1.6, 1.44]	[-0.61, 0.46]
$\epsilon_{e\tau}^{e,L}$	[-0.860, 0.350]	[-0.84, 0.84]	[-0.4, 0.4]	[-0.44, 0.44]	[-0.33, 0.33]	-	[-0.152, 0.152] [-0.055,0.055]	[33, 0.35]	[-0.055, 0.023] [-0.042, 0.012]	[-1.6, 1.44]	[-0.61, 0.46]
$\epsilon^{e,L}_{\mu\mu}$	[-0.364, 1.387]	-	[-0.03,0.03]	-	[-0.03, 0.03]	iome	[10.4], 0.4] [-0.010,0.010]		[-0.290, 0.390] [-0.192, 0.240]	[-1.6, 1.44]	[-0.61, 0.46]
$\epsilon^{e,L}_{\mu\tau}$	[-0.035, 0.028]	-	[-0.1,0.1]	-	[-0.1, 0.]	JICI	-	-	[-0.015, 0.013] [-0.010, 0.010]	[-1.6, 1.44]	[-0.61, 0.46]
$\epsilon_{\tau\tau}^{e,L}$	[-0.350, 1.400]	-	[-0.5,0.5]	-	[-0.46, 0 .24]	[-0.16 , 0.110] [0.41, 0.66]	[-0.040, 0.04] [-0.010,0.010]	-	[-0.360, 0.145] [-0.120, 0.095]	[-1.6, 1.44]	[-0.61, 0.46]
$\epsilon_{ee}^{e,R}$	[-0.010, 2.039]	[-0.07, 0.08]	[-1, 0.5]	[-0.04, 0.14]	[0.004, 0.151]	[-0.27, 0.59]	[-0.33, 0.25] [-0.07, 0.07]	[-0.04, 0.06]	[-0.185, 0.380] [-0.130, 0.185]	[-1.6, 1.44]	[-0.39, 0.31]
$\epsilon_{e\mu}^{e,R}$	[-0.179, 0.146]	[-0.19, 0.19]	-	-	[-0.13, 0.13]	-	[-0.236, 0.236] [-0.08, 0.08]	[-0.15, 0.16]	[-0.025, 0.052] [-0.017, 0.040]	[-1.6, 1.44]	[-0.39, 0.31]
$\epsilon_{e\tau}^{e,R}$	[-0.860, 0.350]	[-0.19, 0.19]	[-0.7, 0.7]	[-0.27, 0.27]	[-0.05, 0.05] [-0.28, 0.28]	-	[-0.236, 0.236] [-0.08; 0.08]	[-0.15, 0.16]	[-0.055, 0.023] [-0.042, 0.012]	[-1.6, 1.44]	[-0.39, 0.31]
$\epsilon_{\mu\mu}^{e,R}$	[-0.364, 1.387]	-	[-0.03,0.03]	-	[-0.03, 0.03]	-	[-0.10 , 0.12] [-0.006, 0.006]	-	[-0.290, 0.390] [-0.192, 0.240]	[-1.6, 1.44]	[-0.39, 0.31]
$\epsilon^{e,R}_{\mu\tau}$	[-0.035, 0.028]	-	[-0.1,0.1]	-	[-0.1, 0.1]	-	-	-	[-0.015, 0.013] [-0.010, 0.010]	[-1.6, 1.44]	[-0.39, 0.31]
$\epsilon_{\tau\tau}^{e,R}$	[-0.350, 1.400]	-	[-0.5,0.5]	-	[-0.25, 0.43]	[-1.05, 0.31]	[-0.10 , 0.12] [-0.006, 0.006]	-	[-0.360, 0.145] [-0.120, 0.095]	[-1.6, 1.44]	[-0.39, 0.31]

We investigate charge- and neutral-current neutrino NSIs in the EFT framework.

- For CC NSIs, we find reactor (Daya Bay, Double Chooze, RENO) and long baseline (T2K, NOvA) neutrino experiments are complementary, the latter are sensitive to new physics already at the ~20TeV scale.
- For NC NSIs up to dim-7, constraints from precision measurements of Neff (Planck, CMB-S4) are complementary to other type of neutrino experiments (COHERENT, collider, solar and reactor neutrino experiments, DUNE etc).

Reactor vs LBL neutrino experiments

$$\begin{aligned}
\mathbf{Reactor} & \epsilon_{e\beta}^{s} = \left[\epsilon_{L} - \epsilon_{R} - \frac{g_{T}}{g_{A}} \frac{m_{e}}{f_{T} (E_{\nu})} \epsilon_{T}\right]_{e\beta}^{*}, \quad (\beta \text{ decay}) & (2.4) \\
\epsilon_{\beta e}^{d} = \left[\epsilon_{L} + \frac{1 - 3g_{A}^{2}}{1 + 3g_{A}^{2}} \epsilon_{R} - \frac{m_{e}}{E_{\nu} - \Delta} \left(\frac{g_{S}}{1 + 3g_{A}^{2}} \epsilon_{S} - \frac{3g_{A}g_{T}}{1 + 3g_{A}^{2}} \epsilon_{T}\right)\right]_{e\beta}, \text{ (inverse } \beta \text{ decay)} \\
\mathbf{LBL} & \epsilon_{\mu\beta}^{s} = \left[\epsilon_{L} - \epsilon_{R} - \frac{m_{\pi}^{2}}{m_{\mu} (m_{u} + m_{d})} \epsilon_{P}\right]_{\mu\beta}^{*}, \quad (\text{pion decay}) & (2.6)
\end{aligned}$$

Multiple operators

Multiple operators

Simplified leptoquark model

$$\mathcal{L}_{LQ} = |D_{\mu}S|^{2} - M_{1}^{2}|S|^{2} - \lambda_{H1}|H|^{2}|S|^{2} - \frac{c}{2}|S|^{4} + ((\lambda^{L})_{i\alpha}\bar{q}_{i}^{c}\epsilon\ell_{\alpha} + (\lambda^{R})_{i\alpha}\bar{u}_{i}^{c}e_{\alpha})S_{1} + h.c.$$

NC NSIs: Comparison

e's	[103]	[97]	[82]	[83]	[84]	[85]	[90]	[98]	[35]	This wo	rk
	[100]	[0.]	[02]	[50]	[]	[00]	[00]	[00]	[00]		
										Planck	CMB-S4
$\epsilon_{ee}^{e,L}$	[-0.010, 2.039]	[-1.53, 0.38]	[-0.07, 0.1]	[-0.05, 0.12]	[-0.03, 0.08]	[-0.036, 0.063]	[-0.017, 0.027]	[-0.08, 0.08]	[-0.185, 0.380]	[-1.6, 1.44]	[-0.61, 0.46]
							[-0.003, 0.003]	-	[-0.130, 0.185]		
$\epsilon_{e\mu}^{e,L}$	[-0.179, 0.146]	[-0.84, 0.84]	-	-	[-0.13, 0.13]	-	[-0.152, 0.152]	[-0.33, 0.35]	[-0.025, 0.052]	[-1.6, 1.44]	[-0.61, 0.46]
							[-0.055,0.055]		[-0.017, 0.040]		
$\epsilon_{e\tau}^{e,L}$	[-0.860, 0.350]	[-0.84, 0.84]	[-0.4, 0.4]	[-0.44, 0.44]	[-0.33, 0.33]	-	[-0.152, 0.152]	[-0.33, 0.35]	[-0.055, 0.023]	[-1.6, 1.44]	[-0.61, 0.46]
							[-0.055,0.055]		[-0.042, 0.012]		
$\epsilon^{e,L}_{\mu\mu}$	[-0.364, 1.387]	-	[-0.03,0.03]	-	[-0.03, 0.03]	-	[-0.040, 0.04]	-	[-0.290, 0.390]	[-1.6, 1.44]	[-0.61, 0.46]
							[-0.010,0.010]		[-0.192, 0.240]		
$\epsilon^{e,L}_{\mu\tau}$	[-0.035, 0.028]	-	[-0.1,0.1]	-	[-0.1, 0.1]	-	-	-	[-0.015, 0.013]	[-1.6, 1.44]	[-0.61, 0.46]
									[-0.010, 0.010]		
$\epsilon_{\tau\tau}^{e,L}$	[-0.350, 1.400]	-	[-0.5,0.5]	-	[-0.46, 0.24]	[-0.16 , 0.110]	[-0.040, 0.04]	-	[-0.360, 0.145]	[-1.6, 1.44]	[-0.61, 0.46]
						[0.41, 0.66]	[-0.010,0.010]		[-0.120, 0.095]		
$\epsilon_{ee}^{e,R}$	[-0.010, 2.039]	[-0.07, 0.08]	[-1, 0.5]	[-0.04, 0.14]	[0.004, 0.151]	[-0.27, 0.59]	[-0.33, 0.25]	[-0.04, 0.06]	[-0.185, 0.380]	[-1.6, 1.44]	[-0.39, 0.31]
							[-0.07, 0.07]		[-0.130, 0.185]		
$\epsilon_{e\mu}^{e,R}$	[-0.179, 0.146]	[-0.19, 0.19]	-	-	[-0.13, 0.13]	-	[-0.236, 0.236]	[-0.15, 0.16]	[-0.025, 0.052]	[-1.6, 1.44]	[-0.39, 0.31]
							[-0.08, 0.08]		[-0.017, 0.040]		
$\epsilon_{e\tau}^{e,R}$	[-0.860, 0.350]	[-0.19, 0.19]	[-0.7, 0.7]	[-0.27, 0.27]	[-0.05, 0.05]	-	[-0.236, 0.236]	[-0.15, 0.16]	[-0.055, 0.023]	[-1.6, 1.44]	[-0.39, 0.31]
					[-0.28, 0.28]		[-0.08, 0.08]		[-0.042, 0.012]		
$\epsilon^{e,R}_{\mu\mu}$	[-0.364, 1.387]	-	[-0.03,0.03]	-	[-0.03, 0.03]	-	[-0.10, 0.12]	-	[-0.290, 0.390]	[-1.6, 1.44]	[-0.39, 0.31]
							[-0.006, 0.006]		[-0.192, 0.240]		
$\epsilon^{e,R}_{\mu\tau}$	[-0.035, 0.028]	-	[-0.1,0.1]	-	[-0.1, 0.1]	-	-	-	[-0.015, 0.013]	[-1.6, 1.44]	[-0.39, 0.31]
									[-0.010, 0.010]		
$\epsilon_{\tau\tau}^{e,R}$	[-0.350, 1.400]	-	[-0.5,0.5]	-	[-0.25, 0.43]	[-1.05, 0.31]	[-0.10,0.12]	-	[-0.360, 0.145]	[-1.6, 1.44]	[-0.39, 0.31]
							[-0.006, 0.006]		[-0.120, 0.095]		

Table 4. Summary of constraints on dimension-6 neutrino-electron NC NSIs from previous studies and this work. Constraints from a global fitting of all kinds of neutrino oscillation data plus the COHERENT result are obtained in Ref. [103], the TEXONO collaboration in Ref. [97], the LEP, LSND and CHARM-II experiments in Ref. [82], a global analysis of $\nu_e e$ and $\bar{\nu}_e e$ scattering data from LSND, Irvine, Rovno and MUNU experiments in Ref. [83], OPAL, ALEPH, L3, DELPHI, LSND, CHARM-II, Irvine, Rovno and MUNU experiments in Ref. [84], solar and reactor neutrino experiments in Ref. [85], low-energy solar neutrinos at source and detector from the Borexino experiment in Ref. [90], a global analysis of short baseline νe and $\bar{\nu} e$ data from LSND, LAMPF, Irvine, Rovno, MUNU, TEXONO and KRANOYARSK in Ref. [98], and DUNE in Ref. [35].