IceCube constraints on Violation of Equivalence Principle

Work supported by the research grant number 2017W4HA7S "NAT-NET: Neutrino and Astroparticle Theory Network" under the program PRIN 2017 funded by the Italian Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR), and INFN Iniziativa Specifica TAsP.

Damiano F. G. Fiorillo

XIX International Workshop on Neutrino Telescopes

based on D. Fiorillo, G. Mangano, S. Morisi, O. Pisanti, arXiv:2012.07867

Violation of Equivalence Principle (VEP)

General Relativity

Equivalence Principle All particles couple equally to the gravitational field

Damiano Fiorillo

IceCube can constrain at the level of 10^{-22}

Testing the Equivalence Principle can guide toward complete theory

Why does VEP influence neutrinos?

Dephasing leads to oscillations

$E \gtrsim 1 \text{ TeV}$

Atmospheric neutrinos

Gonzalez-Garcia et al., 2004; Battistoni et al., 2005; Abbasi et al., 2009; Esmaili et al., 2014

Damiano Fiorillo

VEP and high energy neutrinos 10^{7} EP. SCICIED $\begin{array}{c} & \nu_{1} \\ & \mu_{2} \\ & \nu_{2} \\ & \nu_{3} \\ & \mu_{3} \\ &$ scillation Earth radius 10³ Matter effect 10^{2}

 10^{1}

 10^{0}

 10^{2}

E [GeV]

 10^{3}

 10^{4}

VEP-induce

$$i\frac{d\nu}{dl} = \begin{pmatrix} UM^{2}U\\ 2p \\ Mass term \end{pmatrix}$$
Flavor basis

$$\Gamma = \begin{pmatrix} \gamma_{1} & 0 & 0\\ 0 & \gamma_{2} & 0\\ 0 & 0 & \gamma_{3} \end{pmatrix} \xrightarrow{\text{Only discuss points}}$$

Simple benchmark choice: gravity couples (diagonally) to mass eigenstates

VEP and atmospheric neutrinos

Model of atmospheric fluxes from Honda et al., 2006

Damiano Fiorillo

Gravitational potential dominated by Great Attractor

$$\phi \sim 10^{-5}$$

Earth gravitational potential negligible $(\phi \sim 10^{-9})$

$$\frac{\delta G}{G} \sim 10^{-22} \longrightarrow \gamma \phi \sim 10^{-22}$$

Model of atmospheric fluxes from Honda et al., 2006

VEP and atmospheric neutrinos

Model of atmospheric fluxes from Honda et al., 2006

Analysis on IC40 and IC79 Esmaili et al., 2014

Analysis on through-going muons Aartsen et al., 2017

IC79 Aartsen et al., 2017 IC86-11

IC86-12/18

Aartsen et al., 2020

 $\chi^2(\gamma_{21}\phi,\gamma_{31}\phi,\alpha,\beta) =$

 $\sum_{i} \frac{\left[N_i^{\text{data}} - \alpha(1 + \beta(0.5 + \cos\theta))N_i^{\text{th}}\right]^2}{\sigma_{i,\text{stat}}^2 + \sigma_{i,\text{sys}}^2}$ $\frac{(1-\alpha)^2}{\alpha} + \frac{\beta^2}{\alpha}$ σ_{α}^{\perp} σ_R^2 Normalization Angular distribution

Constraints from atmospheric neutrinos

 γ_{21} , γ_{31} have same signs

Damiano Fiorillo

 γ_{21}, γ_{31} have opposite signs

Gravitational basis

Simple benchmark choice: gravity couples (diagonally) to mass eigenstates

Parameterized by 3 mixing angles, 1 phase

Extreme benchmark choice: gravity couples (diagonally) to flavor eigenstates

Atmospheric neutrinos cannot constrain all choices! Damiano Fiorillo

What happens for different choices?

U connects gravitational and flavor eigenstates

VEP and astrophysical neutrinos

VEP effects depend on gravitational field structure Minakata et al. 1996

Simple scenario model independent

Conclusions

Complementarity between two approaches

choices of the gravitational basis

choices of the gravitational basis

- VEP in the neutrino sector can be tested by IceCube observations

 - \checkmark Atmospheric neutrinos constrain at the level of $\gamma \phi \sim 10^{-27}$ for some
 - \Rightarrow Astrophysical neutrinos constrain at the level of $\gamma \phi \sim 10^{-31}$ for other

Backup slides

Why does VEP influence neutrinos?

 $\nu_a = \sum_{\beta} \tilde{U}^*_{\beta a} \nu_{\beta}$ Three neutrino states

Simple benchmark case: mass eigenstates couple differently to gravity

 $E^2(1+2\gamma_a\phi)$

Damiano Fiorillo

$$-p^2(1-2\gamma_a\phi)=m_a^2$$

Modified dispersion relation

