Exploring the leptonic CP-violation in the presence of a light sterile neutrino

Sabya Sachi Chatterjee

Institute for Particle Physics Phenomenology, Durham University

XIX International Workshop on Neutrino Telescopes

19.02.2021

Current status of the 3-neutrino framework

Theoretical framework of light sterile neutrino oscillation

- Exploring the CP-Violation in the current and future LBL experiments in presence of a sterile neutrino.
- Conclusions

<u>Current status of f 3 u parameters ($f 3\sigma$ uncertainties)</u>

ArXiv: 2006.11237 by P. Salas et al., arXiv: 2007.14792 by Esteban et al., and arXiv: 1804.09678 by F. Capozzi et al.

<u>Hints towards the sterile neutrino</u>

Theoretical Framework for Sterile Neutrino Oscillation in LBL Expt.

In presence of a sterile neutrino, the time evolution Schrodinger equation in matter is written as

$$i\frac{d}{dt} \begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \\ |\nu_s\rangle \end{pmatrix} = \begin{bmatrix} \frac{1}{2E} U \begin{pmatrix} m_1^2 & 0 & 0 & 0 \\ 0 & m_2^2 & 0 & 0 \\ 0 & 0 & m_3^2 & 0 \\ 0 & 0 & 0 & m_4^2 \end{pmatrix} U^{\dagger} + \begin{pmatrix} V_{CC} + V_{NC} & 0 & 0 & 0 \\ 0 & + V_{NC} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \end{bmatrix} \begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \\ |\nu_s\rangle \end{pmatrix}$$

 Δm_{21}^2 , Δm_{31}^2 , Δm_{41}^2 are the independent mass squared difference in 3+1 sector

 $V_{CC} = \sqrt{2} G_F N_e$ Charge current potential for neutrino

 $V_{NC} = -\frac{G_F N_n}{\sqrt{2}}$

Neutral current potential for neutrino

For antineutrino, $V_{CC} \rightarrow -V_{CC}$ and $V_{NC} \rightarrow -V_{NC}$

We can not phase out $V_{_{
m NC}}$ contribution in 3+1 sector. $V_{_{
m NC}}$ can also play an important role in detecting sterile neutrino ! In our work, the 4x4 mixing matrix between flavor & mass eigenstates is parametrized as :

$$U = \widetilde{R}_{34} R_{24} \widetilde{R}_{14} \widetilde{R}_{23} \widetilde{R}_{13} R_{12} \longrightarrow 3 \nu$$

where, $R_{ij} \& \widetilde{R}_{ij}$ are real (complex) 4×4 rotations in the (i, j) plane containing the 2×2 submatrix

3(N-2) no. of mixing angles

(2N-5) no. of Dirac CP-phases

(N-1) no. of Majorana CP-phases 6

Appearance probability $(P_{\mu e}^{4\nu})$ in vacuum in LBL experiment

A few points to note

We consider $\Delta m_{41}^2 \sim 1 \,\mathrm{eV}^2$ light sterile neutrino

 $\Delta m_{41}^2 \gg \Delta m_{31}^2$ \longrightarrow Fast oscillations get averaged out

No phase information related to Δm_{41}^2 in contrast to SBL

But LBL setups are sensitive to CP phases in contrast to SBL

The probability for one flavor ν_{α} transforming to another flavor ν_{β} is calculated as

$$\mathbf{P}(\nu_{\alpha} \to \nu_{\beta}) = |S_{\beta\alpha}(L)|^2 = |(e^{-iHL})_{\beta\alpha}|^2$$

For neutrinos and antineutrinos

$$\mathbf{P}^{4\nu}_{\mu e} \simeq \mathbf{P}^{\mathrm{ATM}}_{0} + \mathbf{P}^{\mathrm{INT}}_{\mathrm{I}} + \mathbf{P}^{\mathrm{INT}}_{\mathrm{II}}$$

$$\mathbf{P}_{0}^{\mathrm{ATM}} \simeq 4s_{13}^{2}s_{23}^{2}\sin^{2}\Delta \qquad \boldsymbol{\sim} \mathbf{O}\left(\boldsymbol{\varepsilon}^{2}\right) \qquad \boldsymbol{s}_{13} \sim \boldsymbol{s}_{14} \sim \boldsymbol{s}_{24} \sim \boldsymbol{\varepsilon}$$

$$P_{I}^{\text{INT}} \simeq 8s_{12}c_{12}s_{13}s_{23}c_{23}(\alpha\Delta)\sin\Delta\cos(\Delta\pm\delta_{13}) \sim O(\epsilon^{3})$$

$$\alpha \equiv \Delta m_{21}^{2}/\Delta m_{31}^{2} \sim \epsilon^{2}$$

$$\Delta \equiv \Delta m_{31}^2 L/4 E$$

$$P_{II}^{\rm INT} \simeq 4 s_{13} s_{23} s_{14} s_{24} \sin \Delta \sin \left(\Delta \pm \delta_{13} \mp \delta_{14} \right) \sim O(\epsilon^3)$$

See Klop & Palazzo; PRD 91 (2015) 073017

Independent of θ_{34} & δ_{34} in vacuum

Matter Effect

In presence of matter, the leading term in transition probability $P(v_{\mu} \rightarrow v_{e})$ modified as (upto third order)

$$P_{\rm m}^{\rm ATM} \simeq (1+2{\rm k}) P_0^{\rm ATM}$$
 $k = \frac{2 V_{CC} E}{\Delta m_{31}^2} \& V_{CC} = \sqrt{2} G_F N_e$

In matter, the two interference terms acquire corrections which are of the fourth order. For our better analytical understanding, we limit ourselves upto third order i.e., ε^3 . So the interference terms will have the vacuum expressions even in the presence of matter.

However, in our numerical analysis, we consider all the corrections.

Example of numerical probabilities

Question: Can sterile neutrino generate observable CP-Violating effects at LBL?

Though the oscillation driven by Δm^2_{41} gets averaged out, it has appreciable ffect at far detector.

<u>Current constraint on the standard and new CP-phases using T2K and NovA data</u>

CPV discovery is defined as the confidence level at which an experiment can reject the test hypothesis of no CPV i.e., $\delta_{13}(\text{test}) = 0, \pm \pi$

$$\Delta \chi_{\rm CPV}^2 = \chi^2 \left[\delta_{13}(\text{true}) \right] - \chi^2 \left[\delta_{13}(\text{test}) = 0, \, \pm \pi \right]$$

Similar is true for any CP-phases

Please see the talk by P. Dunne and A. Himmel at Neutrino 2020

<u> T2K + NOvA combined analysis</u>

Looking at the Future

CP-Violation search in T2HK

<u>JHEP 1804 (2018) 091 by</u> <u>Agarwalla, SSC, and Palazzo</u>

Small matter effect, high statistics, and spectral information assures minimum of 3σ 14 sensitivity in the unfavorable situation of CP-phase and hierarchy degeneracy.

1300 Km baseline

<u>CPV discovery potential in DUNE</u>

JHEP 09 (2016) 016 by Agarwalla, SSC, and Palazzo

	θ_{34}	$N\sigma_{min} \ [\delta_{13}(true) = -90^0]$	CPV coverage (3σ)
3ν		4.5	50.0%
3+1	00	3.9	43.2%
	9^{0}	3.4	32.0%
	30^{0}	3.3	16.0%

<u>CPV coverage induced by</u> δ_{13}

With the very new setup the sensitivities improve slightly

Provides excellant CPV sensitivity in the SM case

$$P_{I}^{\rm INT} \simeq 8 s_{12} c_{12} s_{13} s_{23} c_{23} (\alpha \Delta) \sin \Delta \cos(\Delta \pm \delta_{13}) \longrightarrow \Delta \text{ amplification term}$$

 $P_{II}^{INT} \simeq 4 s_{13} s_{23} s_{14} s_{24} \sin \Delta \sin \left(\Delta \pm \delta_{13} \mp \delta_{14} \right) \longrightarrow \text{No amplification term}$

Poor sensitivity towards δ_{14} and CPV induced by δ_{14}

Reconstruction of CP-phases in DUNE, T2HK, and ESS

Performance of DUNE and T2HK is slightly better in constraining the delta14 phase

- LBL experiments are sensitive to the CP phases, play a complementary role to the SBL experiments.
- ✓ Currently running two LBL experiments T2K and NovA are playing a leading role in exploring the standard as well as new CP-phases.
- T2HK offers excellent sensitivity to the CPV discovery! There is always 3-sigma sensitivity ensured both by $\delta_{13} \& \delta_{14}$
- ✓ There is guaranteed 3-sigma level CPV discovery induced by delta13. CPV induced by delta14 is not guaranteed at 3-sigma level. If th34 is large enough DUNE can observe CPV induced by delta34.
- ESS offers excellant CPV sensitivity induced by delta13 in the SM case. It also assures a minimum 4.5-sigma sensitivity in presence of sterile neutrino. There is a very poor sensitivity to delta14.

✓ Most importantly T2K, NovA, T2HK, and ESS will play a complementary role to DUNE in exploring the full 3+1 sector.

We hope that the analyses performed in these papers may give deep insight in exploring the CP-violation and the standard and new CP-phases.

Thank you

Gallium Anomaly

To explain it, one possibility may be $\Delta m^2 \approx 1 eV^2$

 SAGE PRC 73(2006) 045805;
 PRC 80 (2009) 015807

 Laveder et al. Nucl. Phys. Proc. Suppl. 168 (2007) 344;
 MPLA 22 (2007) 2499;

 PRD 78 (2008) 073009;
 PRC 83 (2011) 065504;
 PRD 86 (2012) 113014

LSND Anomaly

 $\bar{\mathbf{v}}_{\mu} \rightarrow \bar{\mathbf{v}}_{e}$ Oscillation $L \simeq 30 \ m$, 20 $MeV \le E \le 60 \ MeV$

Source: $\mu^+(\operatorname{rest}) \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

Detection process : $\overline{\nu}_e + P \rightarrow n + e^+$

LSND observed an excess 3.9 $\sigma \ \bar{\nu}_{\it e}$ events in $\bar{\nu}_{\mu}$ beam

The signal can be explained if $\Delta m^2 \succeq 0.1 eV^2$

The Karmen ($L \sim 18$ m) Collaboration did not see the same but could not exclude the entire allowed region.

A.Aguilar-Arevalo et al. [LSND Collb.], PRD 64 (2001) 112007 B.Armbruster et al. [KARMEN Collb.], PRD 65 (2002) 21 112001

MiniBooNE Anomaly

Observed 4.8 σ excess events at low energy both for neutrino and antineutrino mode.

For other kind of explanation please see for example, 1808.02915 by P. Ballet, S. Pascoli, and M. Ross-Lonergan. 1807.09877 by E. Bertuzzo, S. Jana, P. Machado, and R. Funchal

Reactor Antineutrino Anomaly

New analyses (blue and red) of the reactor $\overline{v}e$ spectrum predict a 3% higher flux than the existing calculation (black).

Future prediction from T2K + NOvA

CPV discovery induced by δ_{13} gets deteriorated in the presence of sterile neutrino

CPV induced by δ_{14} never reaches 2σ C.L.

MH marginalized

Total CPV discovery

Source of CPV is not known

JHEP 02 (2016) 111 by Agarwalla, SSC, Dasgupta, and Palazzo

Experiments	Preference over SM	
DANSS	1.5σ	
NEOS	No significance	
Neutrino-4	3.2σ	