Calibrating the world's largest LArTPC detector Mattia Fanì - Los Alamos National Laboratory

on behalf of the DUNE Collaboration

XIX International Workshop on Neutrino Telescopes, Padova (Italy) - 26 Feb 2021

This work is supported by LANL LDRD 20200539 and DUNE Project Funds

The Deep Underground Neutrino Experiment

The next generation long-baseline experiment for neutrino physics

• An ambitious scientific programme:

- Measure δ_{CP} (probe matter-antimatter asymmetry)
- Neutrino mass hierarchy
- Supernovae and solar physics
- Nucleon decay
- BSM searches

The two ProtoDUNE detectors (770 tons each) are the largest LAr-TPCs ever built A single DUNE-FD module will be 20 times larger than one **ProtoDUNE detector**

— EST.1943 —

Calibrating DUNE

• Top-level calibration requirements for the physics goals:

- GeV-scale oscillation physics: energy scale uncertainty < 2% for leptons and 5% for hadrons
- MeV-scale low-energy physics e.g. supernovae, solar: energy scale uncertainty < 5%
- Calibration challenges for DUNE
 - Stringent physics requirements
 - Deep underground location, low stats for cosmic rays
 - Challenge due to huge size
 - Highly segmented detector: 4 drift volumes, hundreds of cathode/anode planes, etc

Getting outstanding performances from a huge-size detector for ambitious physics goals

Dedicated calibration systems are needed

Calibration systems for DUNE Far Detector

Introducing the DUNE Ionisation Laser System

- Calibration systems:
 - **Radioactive sources**
 - 9 MeV gamma rays
 - **Pulsed Neutron Source**
 - 6 MeV gamma rays from capture (see talks of **Y. Bezawada** and **J. Huang**)
 - Ionisation Laser System
 - Multi-purpose calibration system
 - Provides an independent fine-grained measurement of detector parameters e.g. drift velocity, electric field
 - Diagnose the detector e.g. tilts/shifts of anode and cathode, high voltage issues
 - Planning for multiple laser systems on DUNE with ~15 m spacing
 - Two designs planned to avoid shadowing from detector components: field cage (FC) profiles, I-beams, resistor plates etc.
 - For the central ports, field cage penetration is planned for improved coverage

A top view of one DUNE-FD module

DUNE-IoLS - The DUNE Ionisation Laser System

An overview of the hardware design

• The system is composed of:

- One laser system, with a laser (Nd:YAG, 266 nm) and a laser box, including an optical bench
- One optical feedthrough and periscope system, required to drive the laser light inside the liquid argon volume
- A laser beam location system will independently verify the beam position uncertainty requirement of 5 mm over 10 m distance requirement for precision

DUNE-IoLS - The DUNE Ionisation Laser System

An overview of the hardware design

26 February 2021 6

Colle

Mattia Fanì I Calibrating the world's largest LArTPC detector

Laser coverage of DUNE

Laser coverage simulations are actively ongoing to optimise the laser system design and distribution of lasers on most realistic scenarios

Mattia Fanì I Calibrating the world's largest LArTPC detector

Thank you for your attention

