A successful strategy for the CNO measurement with Borexino: the MultiVariate Fit

Alessandra Carlotta Re
Università degli Studi & INFN, Milano (Italy)

On behalf of the Borexino Collaboration
“Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun”.

Nature 587 (2020), 577
HOW TO EXTRACT THE CNO NEUTRINO SIGNAL?

Data-set: Phase-III (July 2016 - February 2020) --> Exposure: 1072 days x 71.3 t

Fit range: 0.32 - 2.64 MeV.

Software cuts:
1) Removing muons
2) Selecting a fiducial volume ($r < 2.8$ m, -1.8 m $< z < 2.2$ m)
3) Tagging/Subtracting 11C background
HOW TO EXTRACT THE CNO NEUTRINO SIGNAL?

Data-set: Phase-III (July 2016 - February 2020) --> Exposure: 1072 days x 71.3 t

Fit range: 0.32 - 2.64 MeV.

Software cuts: 1) Removing muons
2) Selecting a fiducial volume (r < 2.8 m, -1.8 m < z < 2.2 m)
3) Tagging/Subtracting 11C background
Strategy:
Exploiting the difference in the energy distribution of signal and backgrounds to separate them.

→ The spectral shapes for both components are generated in a Geant4 Borexino-tailored Monte Carlo framework.
Borexino: The Predicted Spectral Shapes

![Graph showing predicted spectral shapes for various isotopes](image-url)
TOWARDS THE CNO SOLAR-ν MEASUREMENT

The similarity between the CNO, pep and 210Bi spectral shapes limits the sensitivity of Borexino.

The predicted neutrino rates do not help:
- CNO $\nu \sim 4$-5 cpd/100 ton
- pep $\nu \sim 3$ cpd/100 ton
- 210Bi ~ 15-20 cpd/100 ton
The pp/pep ratio constraint

To reduce correlations we put a constraint on the pp/pep ratio following the theoretical predictions as described in *Nature 562 (2018)*, 505.
To reduce correlations we put a constraint on the pp/pep ratio following the theoretical prediction as described in *Nature 562 (2018), 505*.

Still, the ^{210}Bi spectrum is quasi-degenerate with the CNO neutrino one.....
The Bismuth-210 Constraint

The ^{210}Bi spectrum is still quasi-degenerate with the CNO neutrino one..... But the ^{210}Bi rate can be constrained by precisely (and independently) mapping the ^{210}Po rate!

$$^{210}\text{Pb} \xrightarrow{\beta^-} 23\text{ y} \quad ^{210}\text{Bi} \xrightarrow{\beta^-} 5\text{ d} \quad ^{210}\text{Po} \xrightarrow{\alpha} 138\text{ d} \quad ^{206}\text{Pb} \text{ (stable)}$$
A Multivariate fit is performed and the neutrino interaction rates are obtained by maximizing a binned likelihood function which includes both the 11C-subtracted and 11C-tagged energy spectrum, as well as the radial distribution.

The rate of signals and backgrounds are left free parameters of the fit with the two discussed exceptions: 210Bi and pep.

$$\mathcal{L}_{MV} = \mathcal{L}^{11}_{\text{sub}} \cdot \mathcal{L}^{11}_{\text{tag}} \cdot \mathcal{L}_{\text{rad}}$$
CNO NEUTRINOS: THE RESULT

\[\mathcal{R}(\text{CNO}) = 7.2^{+2.9}_{-1.7} \text{ cpd/100 t (stat)} \]
THANKS!

Related talks @NeuTel:

Friday 19/02/2021
- **D. Basilico**: How the CNO neutrinos detection can unravel the solar metallicity problem?
- **A. Göttel**: Data analysis of a low Polonium field for the discovery of CNO neutrinos in Borexino

Tuesday 23/02/2021
- **G. Bellini**: Neutrino, Solar and star physics with Borexino

Wednesday 24/02/2021
- **O. Penek**: Sensitivity to CNO cycle solar neutrinos in Borexino