

SENSITIVITY TO CNO CYCLE SOLAR NEUTRINOS IN BOREXINO

ÖMER PENEK

On behalf of the Borexino Collaboration

Mitglied der Helmholtz-Gemeinschaft

XIX International Workshop on Neutrino Telescopes 24th February 2021

CONTENTS

Introduction and Motivation

- The Borexino Detector
- ➤Sensitivity to CNO cycle solar neutrinos
- Summary and Conclusions

Introduction and Motivation

Mitglied der Helmholtz-Gemeinschaft

Slide 3

SOLAR NEUTRINOS → THE STANDARD SOLAR MODEL

Usage of current physics and input parameters with best fit observations

SSM Inputs:

▶ Photon luminosity L_{\odot} , the solar mass M_{\odot} , the solar radius R_{\odot} ,

the oblateness $O_{\odot} = \frac{R_{equator}}{R_{polar}} - 1$, and the solar age A_{\odot}

➤Abundances of Elements (Metallicity, High=HZ or Low=LZ)

→ Solar Surface Metal-to-Hydrogen Ratio $\left(\frac{z}{x}\right)_{\bigcirc}$ (Metal = Elements above He)

SSM Outputs:

➢Neutrinos Fluxes (HZ-SSM or LZ-SSM)

>Sound speed profiles \rightarrow Discrepancy in HZ-SSM and LZ-SSM

Helioseismology (Accustic waves, Sun's oscillation):

Excellent Description of Sun's interior structure for > 2 decades

➢Consistent with older HZ (1D description) but in tension with newer LZ (3D description) → SSM should be consistent with both!!!

➤A measurement of CNO can unravel this "solar metallicity problem"

HOW IS THE SUN FUELED? \rightarrow FUSION \rightarrow SOLAR NEUTRINOS

Production in the Core of the Sun $\rightarrow vs$ on Earth in ~8 minutes

Standard Solar Model (SSM)

METALLICITY: SOLAR NEUTRINOS FLUXES

Species	Flux [cm ⁻² s ⁻¹] GS98 (HZ-SSM)	Flux [cm ⁻² s ⁻¹] AGSS09met (LZ-SSM)	Difference (HZ-LZ)/HZ %
рр	$5.98(1 \pm 0.006) \times 10^{10}$	$6.03(1 \pm 0.005) \times 10^{10}$	-0.8 %
рер	$1.44(1 \pm 0.01) \times 10^{8}$	$1.46(1 \pm 0.009) \times 10^{8}$	-1.4 %
hep	$7.98(1 \pm 0.30) \times 10^3$	$8.25(1 \pm 0.30) \times 10^3$	-3.4 %
⁷ Be	$4.93(1 \pm 0.06) \times 10^9$	$4.50(1 \pm 0.06) \times 10^9$	8.9 %
⁸ B	$5.46(1 \pm 0.12) \times 10^{6}$	$4.50(1 \pm 0.12) \times 10^{6}$	17.6 %
¹³ N	$2.78(1 \pm 0.15) \times 10^8$	$2.04(1 \pm 0.14) \times 10^{8}$	26.6 %
¹⁵ O	$2.05(1 \pm 0.17) \times 10^{8}$	$1.44(1 \pm 0.16) \times 10^{8}$	29.7 %
¹⁷ F	$5.29(1 \pm 0.20) \times 10^{6}$	$3.26(1 \pm 0.18) \times 10^{6}$	38.3 %

METALLICITY: SOLAR NEUTRINOS FLUXES

Species	Flux [cm ⁻² s ⁻¹] GS98 (HZ-SSM)	Flux [cm ⁻² s ⁻¹] AGSS09met (LZ-SSM)	Difference (HZ-LZ)/HZ %
рр	$5.98(1 \pm 0.006) \times 10^{10}$	$6.03(1 \pm 0.005) \times 10^{10}$	-0.8 %
рер	$1.44(1 \pm 0.01) \times 10^{8}$	$1.46(1 \pm 0.009) \times 10^{8}$	-1.4 %
hep	$7.98(1 \pm 0.30) \times 10^3$	$8.25(1 \pm 0.30) \times 10^3$	-3.4 %
⁷ Be	$4.93(1 \pm 0.06) \times 10^9$	$4.50(1 \pm 0.06) \times 10^9$	8.9 %
⁸ B	$5.46(1 \pm 0.12) \times 10^{6}$	$4.50(1 \pm 0.12) \times 10^{6}$	17.6 %
¹³ N			26.6 %
¹⁵ O	\rightarrow HZ and LZ se	29.7 %	
¹⁷ F	~30	38.3 %	

EXPECTED SOLAR NEUTRINO SPECTRA

➔ Difference in endpoint energies and shapes gives possibility to distinguish them

The Borexino Detector

HOW TO "DETECT" THE SUN ?

The Borexino Detector located at LNGS in Italy

2212 inward-facing PMTs

Nylon Outer Vessel

R = 5.5 m Barrier for Rn from steel, PMTs etc.

Nylon Inner Vessel

R = 4.25 m ~ 300 tons of liquid scintillator: (PC/PPO solution)

Fiducial volume:

~100 tons (software cut)

Detection principle: elastic scattering on electrons Technique advantages: high light-yield Technique disadvantages: no directional information

Water tank: R = 9 m, 2.1 kt of water Shielding Cherenkov muon veto

Stainless Steel Sphere: R = 6.85 m Scintillator container PMTs support

208 Outer Detector PMTs

✓ Hardware Threshold ~ 50 keV ✓ $\frac{\Delta E}{E} \sim \frac{5\%}{\sqrt{E[MeV]}}$

- ✓ Ph. Yield ~ 500 p.e./MeV in 2000 PMTs
- Position Reconstruction ~10 cm @1MeV

JÜLICH Forschungszentrum

Sensitivity to CNO cycle solar neutrinos in Borexino

Mitglied der Helmholtz-Gemeinschaft

Slide 11

CHALLENGES I: CORRELATIONS

- Shown here: recoiled e^- spectra for CNO- ν , pep- ν , and ²¹⁰Bi β^- decay electrons
- High Spectral Correlation with ²¹⁰Bi and solar *pep* neutrino signal

CHALLENGES I: SOLUTIONS

pep-v constraint

- $\gg p + e^- + p \rightarrow d + v_e$ and $p + p \rightarrow d + e^+ + v_e$ maximal correlated (same matrix element in nuclear physics)
- $\rightarrow \Phi_{pp}/\Phi_{pep}$ robust prediction without latest data $\rightarrow \sigma(pep) \sim 10\%$
- > Global Analysis on all Solar- ν experiments applying luminosity constraint $\rightarrow \sigma(pep) \sim 1.4\%$ (Here, 1% CNO contribution negligible)

Bi constraint

Lifetimes

7.23 d 199.1 d 32 v **Bi-Po-Tagging (Unsupported Po, Migration Po, Supported Po):**

In secular equilibrium Rate(210Bi, β^{-}) = Rate(210Po, α) (Supported Po)

²¹⁰Po identification:

Monoenergetic Decay ("Gaussian") + α -decay in Borexino \Leftrightarrow Event-by-Event Pulse Shape Discrimination \rightarrow Multilayer Perceptron (MLP variable)

CHALLENGES II: ¹¹C RECIPE→ THREEFOLD COINCIDENCE (TFC)

TFC Algorithm

Calculate for each event the probability to be ¹¹C (using a Likelihood)

Divide Total Exposure in TFC-subtracted and TFC-tagged spectra (also called ¹¹C depleted and ¹¹C enriched spectra, respectively)

PSEUDO DATASETS

- Fiducial Volume Cut: R < 2.8 m, -1.8 m < z < 2.2 m)
- Exposure: 1000 days \times 71.3 tonnes
- ¹¹C depleted spectrum (TFC)

COUNTING ANALYSIS I

• **Counting Analysis:** Count the number of events in a region of interest (ROI), dominated by ²¹⁰Bi, CNO, and *pep* $N_{total}^{ROI} = N_{Bi}^{ROI} + N_{CNO}^{ROI} + N_{pep}^{ROI} + N_{others}^{ROI}$

COUNTING ANALYSIS II

> Number of events in ROI (~0.8..1.0 MeV) is:

$$N_{model} = \sum_{k=\text{Bi,CNO,pep,others}} \varepsilon_k N_k$$

\succ Here, the efficiency of each species is important:

$$\varepsilon_k = \int_{0.8 \text{ MeV}} \text{PDF}_k(E) dE$$

Component	Efficiency in ROI ε_k [%]		
CNO-v	7.37		
pep-v	15.98		
²¹⁰ Bi	4.55		
¹¹ C	4.91		

Other species efficiencies are less than 1.5%

Robust against systematics

MULTIVARIATE FITTING \rightarrow ENERGY+RADIAL

- $\rightarrow \mathcal{L}_{MV}^{2D}(\vec{\theta}) = \mathcal{L}_{sub}^{TFC}(\vec{\theta}) \mathcal{L}_{tag}^{TFC}(\vec{\theta}) \mathcal{L}_{radial}(\vec{\theta})$ (complementary 2D poisson with fit in Energy = TFC subtracted + TFC tagged fit + Radial fit)
- Constraints on *pep* and ²¹⁰Bi are considered as gaussian or semi-gaussian (=upper limit) pull terms
 → Upper Limit only only applied on ²¹⁰Bi

INJECTED RATES FOR TOY MC STUDY

Exposure 1000 days times 71.3 tonnes Injected Rates for HZ- and LZ-SSM predictions

	Injected Rates LZ [cpd/100t]	Injected Rates HZ [cpd/100t]	Component
	3.52	4.92	CNO-v
→ Constrained	2.78	2.74	pep-v
	43.7	47.9	⁷ Be-ν
→ Constrained	10	10	²¹⁰ Bi
	28	28	¹¹ C
	1	1	Ext. ⁴⁰ K
	5	5	Ext. ²⁰⁸ TI
	4	4	Ext. ²¹⁴ Bi
	12	12	⁸⁵ Kr
JULICH Forschungszentrum	50	50	²¹⁰ Po

CNO PRECISION: COUNTING VS. FIT

> ²¹⁰Bi and *pep* rates \rightarrow symmetric gaussian pull term

SENSITIVITY STUDIES I: DISCOVERY POTENTIAL

- I. Fit Pseudo Datasets w/ CNO injected and w/o CNO injected twice: 1. CNO leaving free and 2. CNO fixed to 0
- II. Define test statistics $q(\theta) = -2 \times \log \frac{L(\theta = CNO = free)}{L(CNO = 0)}$ (log-likelihood-ratio on each dataset)
- III. Evaluate *p*-value: $p = \int_{q_{med}}^{\infty} f(q|\text{no CNO injected}) dq$ $(q_{med}: \text{ Median of } q)$

Asymptotic Limit Case:
$$f(q|\mu) = \left(1 - \Phi\left(\frac{\mu}{\sigma}\right)\right)\delta(q) + \frac{1}{2}\frac{1}{\sqrt{2\pi q}} \exp\left(-\frac{1}{2}\left(\sqrt{q} - \frac{\mu}{\sigma}\right)^2\right)$$

- > Blue Distribution: $f(q|\mu) \Leftrightarrow CNO$ injected
- ➢ Red Distribution:
 f(q|0) ⇔ No CNO injected

Seite 21

SENSITIVITY STUDIES II: DISCOVERY POTENTIAL

Using an exposure of 1000 days times 71.3 tonnes

SENSITIVITY STUDIES II: DISCOVERY POTENTIAL

Using an exposure of 1000 days times 71.3 tonnes

CNO CYCLE 80-90 YEARS AFTER BETHE AND WEIZSÄCKER

nature

Explore our content v Journal information v Subscribe

nature > articles > article

Article | Published: 25 November 2020

Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun

View all

The Borexino Collaboration

Nature 587, 577–582(2020) | Cite this article 191 Altmetric | Metrics

Abstract

For most of their existence, stars are fuelled by the fusion of hydrogen into helium. Fusion proceeds via two processes that are well understood theoretically: the proton–proton (*pp*) chain and the carbon–nitrogen–oxygen (CNO) cycle^{1,2}. Neutrinos that are emitted along such fusion processes in the solar core are the only direct probe of the deep interior of the Sun. A complete spectroscopic study of neutrinos from the *pp* chain, which produces about 99 per cent of the solar energy, has been performed previously²; however, there has been no reported experimental evidence of the CNO cycle. Here we report the direct observation, with a high statistical significance, of neutrinos produced in the CNO cycle in the Sun. This experimental evidence was obtained using the highly radiopure, large-volume, liquid-scintillator detector of Borexino, an experiment located at the underground Laboratori Nazionali del Gran Sasso in Italy. The main experimental challenge was to identify the excess signal—only a few counts per day above the background per 100 tonnes of target—that is attributed to interactions of the CNO neutrinos. Advances in the thermal stabilization of the detector over the last five years enabled us to develop a method to constrain the rate of bismuth-210 contaminating the scintillator. In the CNO cycle, the fusion of hydrogen is

catalysed by carbon, nitrogen and oxygen, and so its rat neutrinos-depends directly on the abundance of the result therefore paves the way towards a direct CNO neutrinos. Our findings quantify the ret be of the order of 1 per cent; however, in me energy production. This work provides e for the stellar conversion of hydrogen in

and so its rate mee of the second se Alessandra Re's talk –A successful strategy for the CNO measurement

Alex Goettel's talk – Data analysis of a low-Po field for the CNO discovery

Davide Basilico's talk – How the CNO neutrinos detection can unravel the solar metallicity problem (All 3 talks, Friday 19/02/2021)

Gianpaolo Bellini's Plenary Talk – Neutrino, Solar, and Star Physics with Borexino (Tuesday 23/02/2021, 2pm)

Slide 24

SUMMARY – CONCLUSIONS – OUTLOOK

- ✓ It has been proven through the sensitivity studies that Borexino has sensitivity to CNO cycle solar neutrinos
- ✓ 5σ are clearly reached when constraining the pep-V rate to 0.04 cpd/100t precision and ²¹⁰Bi to 1 cpd/100t precision
 → This case is comparable to the observation on data
- ✓ There is 3σ sensitivity to CNO without ²¹⁰Bi constraint when doubling the statistics (while keeping the *pep* constraint)

The European Physical Journal

Particles and Fields

Grazie Infinite

Internal view of the Borexino liquid scintillator containment liquid scintillator vessel. From the photo several parts of the detector are visible: the photomultipliers (silver-like color) the mu-metal shielding (brass-like color) the bottom of the outer nylon vessel (upper part of the photo).

D Springer

From the Borexino collaboration on: Sensitivity to neutrinos from the solar CNO cycle in Borexino

Thanks a lot

Questions?

Slide 26

Discussion

Backup

BOREXINO RESULTS OVERVIEW

2007	⁷ Be, <i>pep,</i> ⁸ B Geo-Nu Calibrations	2010 2012	Improve per ⁷ Be se	<i>pp</i> ed Measurement of I o Discovery (5 <i>σ</i>) easonal modulation	2016	5
	Bx Phase I			Bx Phase II		Bx Phase III
		Scintillator Purification				Improved Thermal stability CNO analysis
Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy (Phys. Rev. D 89, 112007 (2014))		Improved Radiopurity: ⁸⁵ Kr ~ 4.6 ²¹⁰ Bi ~ 2.3		Seasonal modulation of the ⁷ Be solar neutrino rate in Borexino (Astroparticle Phys. Vol. 92, 21-29 (2017))		Comprehensive measurement of <i>pp</i> -chain solar neutrinos (Nature 562, 505–510 (2018))
						Comprehensive geoneutrino analysis with Borexino (Phys. Rev. D 101 , 012009 (2020))
Measuremnt of the solar ⁸ B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector (Phys. Rev. D 82, 033006 (2010))		Measurement of geo- neutrinos from 1353 days of Borexino (Phys. Let. B 722 295-300 (2013)) Neutrinos from the primary proton-proton fusion process in the Sun (Nature 512, 383-386 (2014)) Spectroscopy of geoneutrinos from 2056 days of Borexino Data (Phys. Rev. D 92, 031101® (2015))		Simultaneous Precision Spectroscopy of pp , ⁷ Be, and pep Solar Neutrinos with Borexino Phase-II (arXiv:1707.09279v2 (2017)) \rightarrow Phys. Rev. D 100 , 082004 (2019) Improved measurement of ⁸ B solar neutrinos with 1.5 kt y of Borexino exposure (arXiv:1709.00756v1 (2017)) \rightarrow Phys. Rev. D 101 , 062001 (2020)), 5	Search for low-energy neutrinos from astrophysical sources with Borexino (Astropart. Phys. Vol. 125, Feb. 2021, 102509)
						Constraints on flavor-diagonal non-standard neutrino Interactions from Borexino Phase-II (JHEP 2020, 38 (2020))
	h				Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun (Nature 587, 577-582 (2020))	
					Sensitivity to neutrinos from the solar CNO cycle in Borexino (<i>Eur. Phys. J.</i> C 80 , 1091 (2020))	

BISMUTH-210 FROM POLONIUM-210

Two components: ²¹⁰Po in sec. Equilibrium with ²¹⁰Bi in the FV (supported Po) and ²¹⁰Po from the ²¹⁰Pb in inner vessel leaking inside the active liquid (via diffusion or convection) (unsupported Po)

> Minimum ²¹⁰Po Rate \Leftrightarrow Upper Limit of ²¹⁰Bi Rate : $R(Po_{min}) = R(Bi) + R(Po^U) \ge R(Bi)$

Identification of the low polonium field (LPoF)

Mitglied der Helmholtz-Gemeinschaft

$$\begin{split} \varepsilon_{\rm Ene}, \, \varepsilon_{\rm MLP} \, \text{efficiency Energy and MLP} \, (\alpha s) \\ R_{\beta} \, \text{beta rate after } \alpha \, \text{selection} \\ \\ \frac{d^2 R \, (\mathrm{Po}_{\min})}{d \, (\rho^2) \, dz} &= \left[R \, (\mathrm{Po}_{\min}) \, \varepsilon_{\rm Ene} \varepsilon_{\rm MLP} + R_{\beta} \right] \\ & \times \left(1 + \frac{\rho^2}{a^2} + \frac{\left(z - z_0\right)^2}{b^2} \right). \end{split}$$

Seite 30

BISMUTH-210 FROM POLONIUM-210

Minimum ²¹⁰Po Rate \Leftrightarrow Upper Limit of ²¹⁰Bi Rate : $R(Po_{min}) = R(Bi) + R(Po^U) \ge R(Bi)$

Binning 1 or 2 months

Two methods: 1) Cubic Spline Fit 2) Paraboloidal Fit

Mitglied der Helmholtz-Gemeinschaft

Seite 31

BISMUTH-210 HOMOGENEITY

Question: ²¹⁰Bi in 20 tonnes. But FV is 71.3 tonnes. So, is the ²¹⁰Bi rate homogenous? \rightarrow Compare the angular and radial distribution of events with homogeneous distribution

Angular

BISMUTH-210 UPPER LIMIT + SYSTEMATICS

What do we get?

$R\left(\mathrm{Po}_{\mathrm{min}} ight)$	σ_{fit}	σ_{mass}	σ_{bin}	$\sigma^{hom.}_{angular}$	$\sigma^{hom.}_{radial}$	σ^{leak}_eta	σ_{tot}
11.5	0.88	0.36	0.31	0.59	0.52	0.30	1.30

- σ_{fit} : paraboloidal/spline fit uncertainty
- σ_{mass} : LPoF mass uncertainty
- σ_{bin} : Uncertainty due to data binning (10 30 cm)
- $\sigma_{angular}^{hom.}$ and $\sigma_{radial}^{hom.}$: see previous slide
- $\sigma_{\beta}^{le\bar{a}k}$: R_{β} uncertainty (β leakage)
- σ_{tot} : add all these uncertainties in quadrature \rightarrow total

$R_{\rm Bi} \le (11.5 \pm 1.3) \text{ cpd/100t}$

SPECTRAL FIT

Multivariate Fit: $\mathcal{L}_{MV}(\vec{\theta}) = \mathcal{L}_{sub}^{TFC}(\vec{\theta}) \mathcal{L}_{Tag}^{TFC}(\vec{\theta}) \mathcal{L}_{Radial}(\vec{\theta})$

Fit Conditions: Monte Carlo Fit Fit Range: 320 to 2640 keV $R_{pep} = (2.74 \pm 0.04) \text{ cpd/100t} \rightarrow \text{symmetric gaussian penalty}$ $R_{\text{Bi}} \leq (11.5 \pm 1.3) \text{ cpd/100t upper limit }$

Mitglied der Helmholtz-Gemeinschaft

Seite 34

Forschungszentrum

CNO MEASUREMENT → FIT

Counting Analysis \rightarrow Pick Ene. window where FOM is maximal

DISCOVERY POTENTIAL -> TOY MC APPROACH

Inject all systematics in a toy study based on non-linearity of the energy scale (0.4%), spatial non-uniformity z-axis (0.28%), light yield (0.32%), ¹¹C peak position, other ²¹⁰Bi spectral shapes (18%) (area of ²¹⁰Bi is constrained by the upper limit)

- Create pseudo datasets w/ CNO (H₁) injected and w/o CNO injected (H₀)
- Fit both datasets
 leaving CNO free
 ln_{0,1} CNO_{=free} and CNO
 fixed to zero ln_{0,1} CNO₌₀
- Evaluate Test Statistics: $q = -2 \ln \frac{\ln_{0,1} \text{CNO}_{=free}}{\ln_{0,1} \text{CNO}_{=0}}$
- Gray function 13.8 million simulations
 Integral of gray from 30.05 to infinity gives the p-value: 5σ at 99% C.L.

JÜLICH Forschungszentrum

SENSITIVITY HZ-SSM VS. LZ-SSM

Using an exposure of 1000 days times 71.3 tonnes

