How can CNO neutrinos unravel the solar metallicity problem?

Dr. Davide Basilico on behalf of the Borexino collaboration

XIX International Workshop on Neutrino Telescopes 18-26 Feb 2021, online

University of Milan, INFN Milan

UNIVERSITÀ DEGLI STUDI DI MILANO

Istituto Nazionale di Fisica Nucleare

1) Solar-v and SSMs

Solar neutrinos

- Sun is powered by nuclear fusion reactions \rightarrow neutrino emission
- "Photography" of the Sun core
- Two sequences: pp-chain (primary in the Sun, ~99% lum.) and the secondary CNO cycle

Net reaction: $4p \rightarrow {}^{4}\text{He} + 2e^{+} +$ $26.731\,\mathrm{MeV}$

Solar neutrinos

strict interplay between astrophysics and particle physics

Standard Solar Model

Describing the Sun evolution: from a protostar to the current star

Standard Solar Model

Describing the Sun evolution: from a protostar to the current star

Standard Solar Model

Describing the Sun evolution: from a protostar to the current star

Predictions: physical description of the global properties of the Sun including <u>solar neutrino fluxes</u> and sound speed profiles

Why are CNO-v interesting?

- 1) Missing tile of the solar fusion puzzle
- 2) Primary mechanism in massive and older stars
- 3) Solar metallicity puzzle
- re-evaluation of photospheric chemical composition \rightarrow 20% reduction of solar metallicity (from HZ to LZ)
- new sound speed profile inconsistent with helioseismology
- <u>Solar v fluxes depend on metallicity</u> (see later)

sound speed % diff B16-GS98 0.010 B16-AGSS09met data δc/c 0.005 wrt 0.000 ~1% discrepancy for LZ-SSM 0.0 0.2 0.4 0.6 0.8 r/R

Borexino detector

- Low-energy spectroscopy of solar ν, located at LNGS
- Data-taking since 2007
- Active mass: 300t of ultrapure liquid scintillator
- Detection via elastic scattering

$$\boldsymbol{\nu}_{x} + \boldsymbol{e}^{-} \rightarrow \boldsymbol{\nu}_{x} + \boldsymbol{e}^{-}$$
$$x = \boldsymbol{e}, \boldsymbol{\mu}, \boldsymbol{\tau}$$

Scintillation

Graded shielding: buffer liquid and Gran Sasso

- Low radioactivity: 10⁻¹⁹ g/g ²³⁸U, 5·10⁻¹⁸ g/g ²³²Th
 - Radiopure materials

Borexino timeline

Borexino CNO-v detection

"Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun" Borexino Collaboration, Nature 587 (2020) 577-582

CNO-
$$\nu$$
 flux: ϕ_{CNO} = 7.0 (1^{+0.43}_{-0.29}) x 10⁸ cm⁻²s⁻¹

No CNO-v hypothesis excluded at **5.00** significance level

Solar physics implications

- HZ/LZ discrimination
- C+N abundance in solar core

Borexino v results

ν source	$\Phi(BX) \ [cm^{-2}s^{-1}]$	$\Phi(SSM) \ [cm^{-2}s^{-1}]$	$\Delta\Phi/\Phi~[\%]$
CNO	$7.0(1^{+0.43}_{-0.29})\cdot 10^8$	$\begin{array}{l} 4.88(1\pm0.16)\cdot10^8~(\mathrm{HZ})\\ 3.51(1\pm0.14)\cdot10^8~(\mathrm{LZ}) \end{array}$	28%
⁷ Be	$5.0(1\pm0.027)\cdot10^9$	$\begin{array}{l} 4.93(1\pm0.06)\cdot10^9~(\mathrm{HZ})\\ 4.50(1\pm0.06)\cdot10^9~(\mathrm{LZ})\end{array}$	17%
⁸ B	$5.68(1\pm0.076)\cdot10^{6}$	$5.46(1 \pm 0.12) \cdot 10^{6} \text{ (HZ)}$ $4.50(1 \pm 0.12) \cdot 10^{6} \text{ (LZ)}$	8%

CNO reactions are catalyzed by metals \rightarrow CNO flux is strongly dependent on metallicity (~28% difference)

HZ vs LZ: hypothesis testing

$$\chi^{2} = \left(\Phi^{\text{data}} - \Phi^{\text{SSM}}\right)^{T} \left(\Sigma^{\text{tot}}\right)^{-1} \left(\Phi^{\text{data}} - \Phi^{\text{SSM}}\right)$$

HZ vs LZ: hypothesis testing

Borexino results	LZ disfavoring
 ⁷Be-v + ⁸B-v (Phase-II) "Comprehensive measurement of pp-chain solar neutrinos" Borexino Collaboration, Oct 24, 2018. Nature 562 (2018) 	1.8σ
CNO- ν + ⁷ Be- ν + ⁸ B- ν (Phase-III and Phase-II) "Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun" Borexino Collaboration, Jun 26, 2020, Nature 587 (2020)	2.1σ

- Borexino CNO rate = **7.2**^{+2.9} cpd/100t,
 - compatible with both HZ-SSM and LZ-SSM (0.5 σ and 1.3 σ)
- Limiting factors:
 - 1) Experimental error (~23%) should be lowered to ~10% to impact on HZ/LZ testing.

2) The precision of the solar model predictions astrophysical S-factors S_{114} (CNO, 7.4%) S_{34} , (⁷Be, 3.4%), S_{17} (⁸B) \rightarrow reduction of nuclear cross section uncertainties is crucial.

Determination of C+N core abundance

- CNO fluxes directly (and indirectly) depend on Carbon and Nitrogen content in solar core
- pp chain fluxes depend indirectly on metallicity, via T of solar core

Solar-v fluxes estimations \rightarrow **degeneracy** of metallicity + T_c + opacity How to disentangle them to extract C and N content?

Determination of C+N core abundance

⁸B-v as a thermometer of solar core:

- CNO-v and ^B-v fluxes depends on T_c by power-laws; $\Phi_i \sim T_c^{\gamma_i}$
- Taking a ratio, dependence on T_c is nearly cancelled out
- Only the dependence on the C+N content holds

$$\frac{N_{\rm C} + N_{\rm N}}{N_{\rm C}^{\rm SSM} + N_{\rm N}^{\rm SSM}} = \left(\frac{\Phi_{^{8}\text{B}}}{\Phi_{^{8}\text{B}}^{\rm SSM}}\right)^{-0.716} \times \frac{R_{\rm CNO}^{\rm BX}}{R_{\rm CNO}^{\rm SSM}} \times [1 \pm 0.5\%(\text{env})]$$
$$\pm 9.1\%(\text{nucl}) \pm 2.8\%(\text{diff})]$$

Projected uncertainty for C+N abundance from a CNO-v measurement (HZ or LZ).

- Borexino CNO-*v* rate: **7.2**₋₁₇+2.9 cpd/100t
- Error dominated by experimental uncertainty
- Future measurement $\sigma_{_{
 m CNO}}$ =0.5 cpd/100t (~10%)
 - $\rightarrow C+N \text{ constrained at 15\% level}$ (as <u>photospheric</u> techniques)

Conclusions

- Borexino provided the first direct experimental evidence of CNO-v
- Combining Borexino CNO-v + ⁷Be-v + ⁸B-v measurements, LZ scenario is mildly disfavoured (**2.1** σ)
 - Limiting factor: CNO-v experimental error

Future perspectives

- If next-future experiments lower CNO error to 10%:
 - Statistically significant distinction between LZ/HZ
 - \circ Determination of C and N abundance in the sun, combining $\phi({\rm CNO})$ and $\phi({\rm 8B})$

Thank you!

Thank you!

Borexino NeuTel 2021 talks

- G. Bellini: Neutrino, Solar and star physics with Borexino

- A. C. Re: A successful strategy for the CNO measurement with Borexino: the Mul tivariate Fit
- A. Göttel: Data analysis for a low Po field for the discovery of CNO neutrinos in Borexino
- Ö. Penek: Sensitivity to CNO cycle solar neutrinos in Borexino

Backup

Why a CNO-v measurement is challenging?

Borexino Phase-III energy spectrum

Why a CNO-v measurement is challenging?

The annoying ²¹⁰Bi background is constrained independently on the spectral fit \rightarrow secular equilibrium with its daughter ²¹⁰Po

See A. Göttel flash talk "Low Po field"

Borexino CNO-v measurement

CNO rate: 7.2^{+2.9} cpd/100t \rightarrow CNO flux: ϕ_{CNO} = 7.0 (1^{+0.43}_{-0.29}) x 10⁸ cm⁻²s⁻¹ First CNO neutrino detection, **5.00 significance level** See G. Bellini talk on 23/2

HZ vs LZ: test statistics

$$\chi^{2}(\text{SSM}) = \left(\Phi^{\text{SSM}} - \Phi^{\text{Exp}}\right)^{\text{T}} \left(\Sigma^{\text{SSM}} + \Sigma^{\text{Exp}}\right)^{-1} \left(\Phi^{\text{SSM}} - \Phi^{\text{Exp}}\right)$$

Distributions of the test statistics t:

$$t = -2 \log \left[\mathcal{L}(\mathrm{HZ}) / \mathcal{L}(\mathrm{LZ}) \right] = \chi^2(\mathrm{HZ}) - \chi^2(\mathrm{LZ})$$

Median discovery power:

- $\sigma_{CNO} = 1.5 \text{ cpd}/100t (~30-40\%):$ $\sigma_{CNO} = 0.5 \text{ cpd}/100t (~10-14\%):$ 1.7σ
- 2.1σ

Power law fluxes-temperature

 $\Phi_i \sim T_c^{\gamma_i}$

	рр	⁷ Be	⁸ B	¹⁵ O	¹³ N
γ_i	-0.8	10.5	23	19.6	14.7

D. Fuschini & F. Villante, private communication J.N. Bahcall & A. Ulmer, *Phys. Rev. D* 53(8) (1996)