Ultra-high-energy neutrino searches and gravitational wave Follow-up with the Pierre Auger Observatory

Michael Schimp
for the Pierre Auger Collaboration

XIX International Workshop on Neutrino Telescopes

February 23, 2021
The Pierre Auger Observatory Surface Detector (SD)

1.5 km spacing → Sensitive to EeV air showers

3000 km² → Large acceptance
Neutrino detection with the Auger SD

Multiple cascades, i.e. many particles → **broad** traces (signal vs. time)

Single particles → **narrow** traces
Neutrino detection with the Auger SD

Primary shower age: young → old

EM: Energetic electromagnetic radiation

μ: Muon

X_{vert, Auger}: Vertical depth in the Auger detector

CR: Cosmic rays

Earth-skimming ν: Neutrinos that barely interact on Earth's surface

Down-going ν: Neutrinos from deep underground sources

TOP OF ATMOSPHERE

EARTH

Signal vs. time [ns] plot for different particles and shower ages.
Neutrino detection with the Auger SD

Down-going Low (DGL)
Down-going High (DGH)
Earth-skimming (ES)

CR

Down-going ν

TOP OF ATMOSPHERE

Earth-skimming $\nu_	au$

Michael Schimp
February 23, 2021
XIX International Workshop on Neutrino Telescopes, University of Padua
Neutrino detection with the Auger SD

\[\mathcal{A}(\theta, t) = \int_{0}^{\infty} E_{\nu}^{-2} A_{\text{eff}}(E_{\nu}, \theta, t) \, dE_{\nu} \]

“Effective area per energy”

Down-going Low (DGL)
Down-going High (DGH)
Earth-skimming (ES)
GW170817 visibility

- Excellent visibility of the merger
- Fast LIGO/Virgo + Fermi GCN circular
- Our follow-up routines were not automatized, manual unblinding was necessary
 - Now: immediate search initiation

2017-08-17

- DGL (60° < θ < 75°)
- DGH (75° < θ < 90°)
- ES (90° < θ < 95°)
- sum

equatorial

- GW (90% CL)
- NGC 4993 neutrino candidate (IceCube)
- neutrino candidate (ANTARES)
- IceCube horizon
- ANTARES horizon
- Auger FoV (Earth-skimming)
- Auger FoV (down-going)
GW170817 neutrino limits

- **No related neutrinos** detected by ANTARES, IceCube, and Auger

- Sensitivity high for ±500 s but reduced for 14 days
 - Good vs. periodic visibility
 - Lesson: lucky strikes happen, improved preparation (faster follow-up) might pay off in the future

Off-axis viewing angle, constrained to < 36° (at time of publication)
Follow-up searches of binary black hole mergers

- LIGO/Virgo binary black hole (BBH) mergers published until 2019-06-02
- GWTC-1 + open public alerts
 - 21 BBH mergers as hypothetical sources
 - Followed up immediately & automatically
 - Regular ultra-high energy (UHE) neutrino searches
 - Until 24 hours after the merger
 - Most probable source localization (90% CL)

- Sources combined by stacking

![Graph of S190412m with 90% CL contour and Auger fovs]
Source property assumptions:

- E^{-2} spectrum
- Universal (all the same) isotropic UHE neutrino emission with luminosity $L(t-t_0)$

Peak luminosity in GWs

Source localization given as pixel-wise probability P

GW150914

Peak luminosity $[10^{56} \text{ erg/s}]$
Source property assumptions:
• E^{-2} spectrum
• Universal (all the same) isotropic UHE neutrino emission with luminosity $L(t - t_0)$

Peak luminosity **in GWs**

![Graph showing peak luminosity in GWs with time after merger](image)

Source localization given as pixel-wise probability P

![Map showing source localization](image)

GW150914
Combining BBH mergers—Time-dependent stacking

Consider time after the merger in **bins i of $\Delta t = 1 \text{ s}$**

- Obtain UHE neutrino sensitivity to each **source s for each time bin i**
- Number of detected and identified neutrinos in time bin i, **from all sources s combined**:

$$N_{\nu,i} = L_i \Delta t \sum_s \frac{\sum_p P_{p,s} A_{p,s,i}}{d_s^2}$$

Summation over **pixels p**

\leftrightarrow “solid angle integration”
Combining BBH mergers—Visibility of sources

\[N_{\nu,i} = L_i \Delta t \sum_s \frac{\sum_p P_{p,s} A_{p,s,i}}{d_s^2} \]

\[t - t_0 = 0.0 \text{ h} \]
Combining BBH mergers—Visibility of sources

\[N_{\nu,i} = L_i \Delta t \sum_s \sum_p \frac{P_{p,s} A_{p,s,i}}{d_s^2} \]

\[t - t_0 = 2.0 \text{ h} \]
Combining BBH mergers—Visibility of sources

\[N_{\nu,i} = L_i \Delta t \sum_s \sum_p P_{p,s} A_{p,s,i} d_s^2 \]

\[t - t_0 = 4.0 \text{ h} \]

Graph showing the visibility of sources with different colors representing different models (DGL, DGH, ES).
\[N_{\nu,i} = L_i \Delta t \sum_s \frac{\sum_p P_{p,s} A_{p,s,i}}{d_s^2} \]

\[t - t_0 = 6.0 \, \text{h} \]

Combining BBH mergers—Visibility of sources
Combining BBH mergers—Visibility of sources

\[N_{\nu,i} = L_i \Delta t \sum_s \sum_{p} \frac{P_{p,s} A_{p,s,i}}{d_s^2} \]

\[t - t_0 = 8.0 \text{ h} \]

Graph showing visibility of sources over time with different colors representing different models (DGL, DGH, ES).
Combining BBH mergers—Visibility of sources

\[N_{\nu,i} = L_i \Delta t \sum_s \frac{\sum_p P_{p,s} A_{p,s,i}}{d_s^2} \]

\(t - t_0 = 10.0 \) h

\[
\begin{array}{c}
0.00000 & 0.00002 & 0.00004 & 0.00006 & 0.00008 & 0.00010 \\
\end{array}
\]

\[
\begin{array}{c}
P_{p,A_p} \quad \text{[cm}^2\text{GeV]} \\
\end{array}
\]
Combining BBH mergers—Visibility of sources

\[N_{\nu, i} = L_i \Delta t \sum_s \frac{\sum_p P_{p, s} A_{p, s, i}}{d_s^2} \]

\[t - t_0 = 12.0 \text{ h} \]
Combining BBH mergers—Visibility of sources

\[N_{\nu,i} = L_i \Delta t \sum_s \sum_p \frac{P_{p,s} A_{p,s,i}}{d_s^2} \]

\[t - t_0 = 14.0 \text{ h} \]

\[P_{p-A_p} \text{ [cm}^2\text{ GeV]} \]

\[\theta [^\circ] \]

\[A_{\text{cm}^2/\text{GeV}} \]

Michael Schimp
Auger ultra-high energy neutrinos from binary black hole mergers
February 23, 2021
XIX International Workshop on Neutrino Telescopes, University of Padua
Combining BBH mergers—Visibility of sources

\[N_{\nu,i} = L_i \Delta t \sum_s \frac{\sum_p P_{p,s} A_{p,s,i}}{d_s^2} \]

\[t - t_0 = 16.0 \, \text{h} \]
Combining BBH mergers—Visibility of sources

\[N_{\nu,i} = L_i \Delta t \sum_s \frac{\sum_p P_{p,s} A_{p,s,i}}{d_s^2} \]

\(t - t_0 = 18.0 \text{ h} \)

\[P_{p-A_p} \text{ [cm}^2\text{ GeV]} \]

\[A \text{ [cm}^2\text{ GeV]} \]

\[\theta[\degree] \]

Michael Schimp
Auger ultra-high energy neutrinos from binary black hole mergers
February 23, 2021
XIX International Workshop on Neutrino Telescopes, University of Padua
$N_{\nu,i} = L_i \Delta t \sum_s \frac{\sum_p P_{p,s} A_{p,s,i}}{d_s^2}$

$t - t_0 = 20.0 \, \text{h}$

Combining BBH mergers—Visibility of sources
Combining BBH mergers—Visibility of sources

\[N_{\nu,i} = L_i \Delta t \sum_s \frac{\sum_p P_{p,s} A_{p,s,i}}{d_s^2} \]

\[t - t_0 = 22.0 \text{ h} \]
Combining BBH mergers—Visibility of sources

\[N_{\nu,i} = L_i \Delta t \sum_s \frac{\sum_p P_{p,s} A_{p,s,i}}{d_s^2} \]

“Number of neutrinos per time bin per luminosity”

Alternating domination by different sources
Combining BBH mergers—Luminosity limit

\[N_{\nu,i} = L_i \Delta t \sum_s \frac{\sum_p P_{p,s} A_{p,s,i}}{d_s^2} \]

No neutrinos observed during 24 h after any merger: \textbf{90 \% CL upper limit on} \(L_i \)

\[N_{\text{up},\nu,i} = \frac{N_{\text{up},\nu,\text{tot}}}{N_{\text{bins}}} = \frac{2.44 \cancel{24 \text{ h}}}{24 \Delta t} = \frac{2.44}{86400} \]

\[\Rightarrow L_{\text{up},i} = \frac{2.44}{86400} \text{ s} \left(\sum_s \frac{\sum_p P_{p,s} A_{p,s,i}}{d_s^2} \right)^{-1} \]
Combining BBH mergers—Luminosity limit

\[
E_{\text{up}} = 1.35 \cdot 10^{52} \text{ erg}
\]

\[
L_{\text{up},i} = \frac{2.44}{86400 \text{ s}} \left(\sum_s \sum_p P_{p,s} A_{p,s,i} \right)^{-1}
\]
Conclusions
Conclusions

- Moving field of view of the Pierre Auger Observatory → strong enhancement of UHE neutrino sensitivity in certain directions → Chance for transient follow up

- UHE neutrino follow-up searches performed for LIGO/Virgo BBH mergers
- Method for **combining all sources** making simple assumptions

- Sensitive to neutrino luminosities below $5 \cdot 10^{46}$ erg/s for certain periods during 1-day follow-up searches
- Overall limit on emitted UHE neutrino energy per source: $1.35 \cdot 10^{52}$ erg

- **Stay tuned for new results this year!** >60 sources, full “4D” GW information
The End
Follow-up of GW events O3

- LIGO/Virgo switched to **open public alerts (OPAs)**, communicated via GCN

- Previously: MoU to share data with LIGO/Virgo, now we **automatically** follow-up the OPAs

- O3 runs since April 2019 with increased sensitivity
 - Increased rates / horizon / source volume
 - + possibly NS-BH mergers
Source Distances

The diagram shows the source distances for different events labeled O1, O2, O3, and TXS 0506+056. The distances are measured in Mpc and range from 0 to 4000 Mpc. The data points are scattered across the range, indicating the distribution of source distances for these events.
Neutrino search and identification

- Pre-select **inlined** and **young** showers
- Neutrino **identification** by zenith-dependent event classification
- Crucial variable: **Area over Peak (AoP)**

![Graph showing the relationship between time and signal, with markers for Peak and Area, and the formula for AoP: \(\text{ AoP} = \frac{\text{Area}}{\text{Peak}} \cdot \text{cal.const.} \)]
Neutrino search and identification

- Pre-select **inclined** and **young** showers
- Neutrino **identification** by zenith-dependent event classification
 - Earth-skimming: <AoP> of all stations in event
 - Down-going: Optimized linear discriminant
 - **Combination of AoPs** of certain stations (esp. early and late ones)
 → “Fisher value”

\[\theta > 90^\circ \]
\[\theta = 66^\circ \pm 1.5^\circ \]

No candidates so far
Neutrino exposure

By direction

![Graph showing neutrino exposure by direction](image1)

- Combined
- ES ($90^\circ < \theta < 95^\circ$)
- DGH ($75^\circ < \theta < 90^\circ$)
- DGL ($60^\circ < \theta < 75^\circ$)

By flavor

![Graph showing neutrino exposure by flavor](image2)

- Auger all flavors
- Auger ν_e
- Auger ν_μ
- Auger ν_τ
- Auger ν_e Earth-Skimming only
- Auger all flavors downward-going only

Enrique Zas, ICRC 2017

Michael Schimp

Auger ultra-high energy neutrinos from binary black hole mergers

February 23, 2021

XIX International Workshop on Neutrino Telescopes, University of Padua
Limits on diffuse neutrino flux

- p, Fermi-LAT, $E_{\text{min}} = 3 \times 10^{17}$ eV (Ahlers 2010)
- AGN (Murase 2014)
- Pulsars SFR evol. (Fang 2014)
- proton, strong & weak evolution, $E_{p,\text{max}} = 10^{20}$ eV (Kampert 2012)
- p or mixed, weak evolution, $E_{p,\text{max}} = 10^{20} - 3 \times 10^{21}$ eV (Kotera 2010)
- Iron, strong & weak evolution, $E_{p,\text{max}} = 10^{20}$ eV (Kampert 2012)

Graph showing the limits on diffuse neutrino flux with different evolutions and energy ranges.
Effective area

![Graph showing effective area vs. energy (E_\nu) for different neutrino types and detectors.](image)

- **Auger ES \(\nu_e \), \(\theta = 91^\circ \)**
- **Auger ES \(\nu_e \), \(\theta = 92^\circ \)**
- **Auger ES \(\nu_e \), \(\theta = 93^\circ \)**
- **Auger DGH \(\nu_e \) CC, \(\theta = 75^\circ \)**
- **Auger DGH \(\nu_e \) CC, \(\theta = 80^\circ \)**
- **Auger DGH \(\nu_e \) CC, \(\theta = 85^\circ \)**
- **Auger DGL \(\nu_e \) CC, \(\theta = 60^\circ \)**
- **Auger DGL \(\nu_e \) CC, \(\theta = 66^\circ \)**
- **Auger DGL \(\nu_e \) CC, \(\theta = 69^\circ \)**
- **IceCube \(\nu_\mu \) CC, \(\delta \in [30^\circ, 90^\circ] \)**
- **IceCube \(\nu_\mu \) CC, \(\delta \in [-5^\circ, 30^\circ] \)**
- **IceCube \(\nu_\mu \) CC, \(\delta \in [-30^\circ, -5^\circ] \)**
- **IceCube \(\nu_\mu \) CC, \(\delta \in [-90^\circ, -30^\circ] \)**
Follow-ups of O1+O2 GW events

LIGO/Virgo O1+O2: MoU between Auger and LVC:

Default neutrino search, considering only

- ±500 s around & +1 day after GW event
- Times at which location of the GW event is visible

BNS merger GW170817: ±500 s & 14 day period after the event
Follow-ups of O1+O2 GW events
Follow-Up of BBH merger GW150914

UHE neutrino sensitivity declination dependent

Newer events: More GW detectors → improved localization by triangulation

total neutrino energy = emitted GW energy
GW151226 Follow-Up—Results

No candidates → Flux limit → Limit on total emitted UHE ν energy

arXiv:1602.06961 (Kotera, Silk):
Binary BHs could produce the measured UHECR flux! → Needs ~ 3% “efficiency” ($E_{\text{UHECR}}/E_{\text{GW}}$)
<table>
<thead>
<tr>
<th>Source of systematic</th>
<th>Combined uncertainty band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulations</td>
<td>~ +4%, −3%</td>
</tr>
<tr>
<td>ν cross section and τ E-loss</td>
<td>~ +34%, −28%</td>
</tr>
<tr>
<td>Topography</td>
<td>~ +15%, 0%</td>
</tr>
<tr>
<td>Total</td>
<td>~ +37%, −28%</td>
</tr>
</tbody>
</table>
O1 GW Follow-Up
Earth-Skimming ν_τ Selection

Inclination: $90^\circ < \theta < 95^\circ$ → elongated footprint

“Ground signal speed” $\sim c$

Reject “muonic” events → > 60 % stations ToT triggered
Neutrinos vs. Photons

(a) $58.5^\circ < \theta_{\text{Rec}} \leq 61.5^\circ$

(b) $61.5^\circ < \theta_{\text{Rec}} \leq 64.5^\circ$

(c) $64.5^\circ < \theta_{\text{Rec}} \leq 67.5^\circ$

(d) $67.5^\circ < \theta_{\text{Rec}} \leq 70.5^\circ$

(e) $70.5^\circ < \theta_{\text{Rec}} \leq 76.5^\circ$