

PIERRE AUGER **OBSERVATORY**

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Ultra-high-energy neutrino searches and gravitational wave Follow-up with the Pierre Auger Observatory

Michael Schimp for the Pierre Auger Collaboration

XIX International Workshop on Neutrino Telescopes

February 23, 2021

The Pierre Auger Observatory Surface Detector (SD)

1.5 km spacing → Sensitive to EeV air showers

3000 km² \rightarrow Large acceptance

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergers XIX International Workshop on Neutrino Telescopes, University of Padua

2

BERGISCHE

UNIVERSITÄT

NUPPERTAL

→ **broad** traces (signal vs. time)

→ **narrow** traces

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergers
XIX International Workshop on Neutrino Telescopes, University of Padua

BERGISCHE

UNIVERSITÄT

WUPPERTAL

PIERRE AUGER

PIERRE AUGER

Michael Schimp Auger ultra-high energy neutrinos from binary black hole mergers February 23, 2021 XIX International Workshop on Neutrino Telescopes, University of Padua

PIERRE AUGER

Michael Schimp Auger ultra-high energy neutrinos from binary black hole mergers February 23, 2021 XIX International Workshop on Neutrino Telescopes, University of Padua

BERGISCHE UNIVERSITÄT **NUPPERTAL**

JCAP 11 (2019) 004

GW170817 visibility

- Excellent visibility of the merger
- Fast LIGO/Virgo + Fermi GCN circular
- Our follow-up routines were not automatized, manual unblinding was necessary
 - Now: immediate search initiation

§ 1.0

0.8

0.6

0.4

our

region in

.001.

8 0.0

60

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergers1XIX International Workshop on Neutrino Telescopes, University of Padua

<u>ApJL 850, L35</u>

7

GW170817 neutrino limits

- No related neutrinos detected by ANTARES, IceCube, and Auger
- Sensitivity high for ±500 s but reduced for 14 days
 - Good vs. periodic visibility
 - Lesson: lucky strikes happen, improved preparation (faster followup) might pay off in the future

Off-axis viewing angle, constrained to < 36° (at time of publication)

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergersD21XIX International Workshop on Neutrino Telescopes, University of Padua

<u>ApJL 850, L35</u>

Follow-up searches of binary black hole mergers

- LIGO/Virgo binary black hole (BBH) mergers published until 2019-06-02
 - GWTC-1 + open public alerts
 - > 21 BBH mergers as hypothetical sources
- Followed up immediately & automatically
 - Regular ultra-high energy (UHE) neutrino searches
 - Until 24 hours after the merger
 - Most probable source localization (90% CL)

Sources combined by stacking

Michael SchimpAuger ultra-high energy neutrinos from binary black hole mergersFebruary 23, 2021XIX International Workshop on Neutrino Telescopes, University of Padua

9

Combining BBH mergers—Assumptions & GW info

Source property assumptions:

- E⁻² spectrum
- Universal (all the same) isotropic UHE ulletneutrino emission with luminosity $L(t - t_0)$

80 Peak luminosity in GWs 60 40 GW170823 [。] 20 GW170818 latitude time after n GW170814 -20 merger GW170809 -40GW170729 -60GW170608 -80GW170104 -50 GW151226 -150-100GW151012 GW150914 0.00002 0.00004 0.00000 Peak luminosity [$10^{3}0^{56}$ erg/s] 5 P

Michael Schimp Auger ultra-high energy neutrinos from binary black hole mergers February 23, 2021 XIX International Workshop on Neutrino Telescopes, University of Padua

Source localization given as pixel-wise probability **P**

GW150914

0.00006

0.00008

10

BERGISCHE UNIVERSITÄT NUPPERTAL

0.00010

Combining BBH mergers—Assumptions & GW info

Source property assumptions:

• E⁻² spectrum

Michael Schimp Auger ultra-high energy neutrinos from binary black hole mergers February 23, 2021 XIX International Workshop on Neutrino Telescopes, University of Padua

Source localization given as pixel-wise probability **P**

Combining BBH mergers—Time-dependent stacking

Consider time after the merger in **bins** *i* of $\Delta t = 1$ s

- Obtain UHE neutrino sensitivity to each source s for each time bin i
- Number of detected and identified neutrinos in time bin *i*, from all sources s combined:

$$N_{\nu,i} = L_i \Delta t \sum_{s} \underbrace{\sum_{p} P_{p,s} A_{p,s,i}}_{s} d_s^2$$

Summation over pixels p

solid angle integration

Auger ultra-high energy neutrinos from binary black hole mergers XIX International Workshop on Neutrino Telescopes, University of Padua

12

BERGISCHE UNIVERSITÄT

Michael SchimpAugeFebruary 23, 2021XIX I

Auger ultra-high energy neutrinos from binary black hole mergers XIX International Workshop on Neutrino Telescopes, University of Padua

13

BERGISCHE UNIVERSITÄT WUPPERTAL

Michael SchimpAuger ultra-high energy neutrinos from binary black hole mergersFebruary 23, 2021XIX International Workshop on Neutrino Telescopes, University of Padua

14

BERGISCHE UNIVERSITÄT WUPPERTAL

Michael SchimpAuger ultra-high energy neutrinos from binary black hole mergersFebruary 23, 2021XIX International Workshop on Neutrino Telescopes, University of Padua

15

BERGISCHE UNIVERSITÄT WUPPERTAL

Michael SchimpAuger uFebruary 23, 2021XIX Inter

Auger ultra-high energy neutrinos from binary black hole mergers XIX International Workshop on Neutrino Telescopes, University of Padua

16

BERGISCHE UNIVERSITÄT WUPPERTAL

Michael SchimpAuger ultra-high energy neutrinos from binary black hole mergersFebruary 23, 2021XIX International Workshop on Neutrino Telescopes, University of Padua

17

BERGISCHE UNIVERSITÄT WUPPERTAL

Michael SchimpAuger ultra-hFebruary 23, 2021XIX Internation

Auger ultra-high energy neutrinos from binary black hole mergers XIX International Workshop on Neutrino Telescopes, University of Padua

18

BERGISCHE UNIVERSITÄT WUPPERTAL

Michael SchimpAugerFebruary 23, 2021XIX Integration

Auger ultra-high energy neutrinos from binary black hole mergers XIX International Workshop on Neutrino Telescopes, University of Padua

19

BERGISCHE UNIVERSITÄT WUPPERTAL

Michael SchimpAuger ultra-high energy neutrinos from binary black hole mergersFebruary 23, 2021XIX International Workshop on Neutrino Telescopes, University of Padua

20

BERGISCHE UNIVERSITÄT WUPPERTAL

Michael SchimpAuger ultra-high energy neutrinos from binary black hole mergersFebruary 23, 2021XIX International Workshop on Neutrino Telescopes, University of Padua

21

BERGISCHE UNIVERSITÄT WUPPERTAL

Michael SchimpAuger ultra-lFebruary 23, 2021XIX Internation

Auger ultra-high energy neutrinos from binary black hole mergers XIX International Workshop on Neutrino Telescopes, University of Padua

22

BERGISCHE UNIVERSITÄT WUPPERTAL

Michael SchimpAuger ultraFebruary 23, 2021XIX Interna

Auger ultra-high energy neutrinos from binary black hole mergers XIX International Workshop on Neutrino Telescopes, University of Padua

23

BERGISCHE UNIVERSITÄT WUPPERTAL

Michael SchimpAuger ultra-hFebruary 23, 2021XIX Internation

Auger ultra-high energy neutrinos from binary black hole mergers XIX International Workshop on Neutrino Telescopes, University of Padua

BERGISCHE UNIVERSITÄT WUPPERTAL

"Number of neutrinos per time bin per luminosity"

Alternating domination by different sources

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergersXIX International Workshop on Neutrino Telescopes, University of Padua

25

Combining BBH mergers—Luminosity limit

Michael Schimp February 23, 2021

pAuger ultra-high energy neutrinos from binary black hole mergers021XIX International Workshop on Neutrino Telescopes, University of Padua

PoS(ICRC2019)415

BERGISCHE

UNIVERSITÄT

NUPPERTAL

26

Combining BBH mergers—Luminosity limit

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergersXIX International Workshop on Neutrino Telescopes, University of Padua

PoS(ICRC2019)415

27

Conclusions

Conclusions

- Moving field of view of the Pierre Auger Observatory \rightarrow strong enhancement of UHE neutrino sensitivity in certain directions \rightarrow Chance for transient follow up
- UHE neutrino follow-up searches performed for LIGO/Virgo BBH mergers
- Method for **combining all sources** making simple assumptions
- Sensitive to neutrino luminosities below $5 \cdot 10^{46}$ erg/s for certain periods during 1-day follow-up searches
- Overall limit on emitted UHE neutrino energy per source: 1.35 · 10⁵² erg
- Stay tuned for new results this year! >60 sources, full "4D" GW information

PIERRE AUGER

29

BERGISCHE

The End

Follow-up of GW events O3

- LIGO/Virgo switched to open public alerts (OPAs), communicated via GCN
- Previously: MoU to share data with LIGO/Virgo, now we automatically follow-up the OPAs
- O3 runs since April 2019 with increased sensitivity
 - Increased rates / horizon / source volume
- + possibly NS-BH mergers

PIERRE AUGER

Auger ultra-high energy neutrinos from binary black hole mergers XIX International Workshop on Neutrino Telescopes, University of Padua

31

BERGISCHE

Source Distances

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergers1XIX International Workshop on Neutrino Telescopes, University of Padua

32

Neutrino search and identification

- Pre-select **inclined** and **young** showers
- Neutrino identification by zenith-dependent event classification
- Crucial variable: Area over Peak (AoP)

Auger ultra-high energy neutrinos from binary black hole mergers XIX International Workshop on Neutrino Telescopes, University of Padua

BERGISCHE UNIVERSITÄT NUPPERTAL

33

Neutrino search and identification

- Pre-select inclined and young showers
- Neutrino identification by zenith-dependent event classification
 - Earth-skimming: <**AoP>** of all stations in event
 - Down-going: Optimized linear discriminant

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergers XIX International Workshop on Neutrino Telescopes, University of Padua

34

Neutrino exposure

By direction

By flavor

Enrique Zas, ICRC 2017

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergers XIX International Workshop on Neutrino Telescopes, University of Padua

35

Limits on diffuse neutrino flux

PIERRE AUGER

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergers
XIX International Workshop on Neutrino Telescopes, University of Padua

36

Effective area

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergers1XIX International Workshop on Neutrino Telescopes, University of Padua

37

LIGO/Virgo O1+O2: MoU between Auger and LVC:

Default neutrino search, considering only

- ±500 s around & +1 day after GW event
- Times at which location of the GW event is visible

BNS merger GW170817: ±500 s & 14 day period after the event

Auger ultra-high energy neutrinos from binary black hole mergers

XIX International Workshop on Neutrino Telescopes, University of Padua

Michael Schimp

February 23, 2021

38

BERGISCHE

Follow-ups of O1+O2 GW events

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergersXIX International Workshop on Neutrino Telescopes, University of Padua

39

Follow-Up of BBH merger GW150914

UHE neutrino sensitivity declination dependent

Newer events: More GW detectors improved localization by triangulation

Michael Schimp Auger ultra-high energy neutrinos from binary black hole mergers February 23, 2021 XIX International Workshop on Neutrino Telescopes, University of Padua

BERGISCHE UNIVERSITÄT WUPPERTAL

total neutrino energy = emitted GW energy

GW151226 Follow-Up—Results

→ Needs ~ 3% "efficiency" (E_{UHECR}/E_{GW})

Michael Schimp February 23, 2021

pAuger ultra-high energy neutrinos from binary black hole mergers021XIX International Workshop on Neutrino Telescopes, University of Padua

41

Systematic uncertainties (PRD 91 092008)

Source of systematic	Combined uncertain
Simulations	$\sim +4\%, -3$
ν cross section and τ E-loss	$\sim +34\%, -2$
Topography	$\sim +15\%, 0$
Total	$\sim +37\%, -2$

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergers
XIX International Workshop on Neutrino Telescopes, University of Padua

O1 GW Follow-Up

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergers
XIX International Workshop on Neutrino Telescopes, University of Padua

44

Earth-Skimming v_{T} Selection

Reject "muonic" events \rightarrow > 60 % stations ToT triggered

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergers XIX International Workshop on Neutrino Telescopes, University of Padua

CC vs NC Fisher Values

Neutrinos vs. Photons

Michael Schimp February 23, 2021

Auger ultra-high energy neutrinos from binary black hole mergers1XIX International Workshop on Neutrino Telescopes, University of Padua

