

Atmospheric neutrino oscillations with Super-Kamiokande and prospects for SuperK-Gd

Pablo F. (U. of Liverpool) for the Super-Kamiokande Coli 2021/02/24, The Neutrino Telescopes Workshop

The Super-Kamiokande (SK) Experiment

- Water-Cherenkov detector
- Located in Kamioka, Japan
- Under Mt. Ikenoyama
- Overburden 1km of rock
- Total of 50 kton of ultra-pure water, and 22.5 kton fiducial volume
- Optically divided into inner (ID) and outer (OD) detectors, instrumented with
 - **ID:** ~11000 20"-PMTs \rightarrow 40% photo-coverage
 - OD: ~2000 8"-PMTs mainly used as veto

The Super-Kamiokande Experiment

More than 20 years of operation and data taking

	Period	Event
SK-I	1996 to 2001	Start
SK-II	2003 to 2005	20% PMT coverage after accident
SK-III	2006 to 2008	Resume 40% PMT coverage
SK-IV	2008 to 2018	Electronics upgrade
SK-V	2019 to 2020	Upgrade for Gd-loading
SK-Gd1	2020 to	Largest Gd-doped WC detector

- Wide variety of fundamental physics over a wide range of energies:
 - > Solar, atm., LBL, SN and astrophysicsal vs, proton and exotic nucleon decays, dark matter
- Still at the forefront with its latest upgrade, SuperK-Gd
 - > Will eventually reach a concentration of 0.2% of Gd, capturing 90% of the neutrons
- Even richer physics capabilities:
 - First measurement of DSNB
 - Background reduction for proton-decay
- Search for solar antineutrinos
- > Improved distinction of vs and \overline{v} s at higher energies

The Super-Kamiokande Experiment

1.1

e-like

e-like

Super-Kamiokande IV

Run 65720 Sub 275 Event 51523895 09-10-19:19:59:15 Inner: 1602 hits, 2951 pe Outer: 2 hits, 2 pe Trigger: 0x10000007 D_wall: 521.0 cm Evis: 294.0 MeV e-like, p = 294.0 ptev/c

µ-like

Super-Kamiokande IV

Run 65718 Sub 22 Event 3976280 09-10-19:14:35:52 Inner: 3389 hits, 17883 pe Outer: 1 hits, 1 pe Trigger: 0x1000007 D wall: 327.7 cm Evis: 1.9 GeV mu·like, p = 1822.0 MeV/c

Charge(pe)

· >26.7 • 23.3-26.7 mu-like 0.7- 1.3

Atmospheric Neutrinos

- Neutrinos produced due to the interaction of cosmic rays and Earth's atmosphere
- Large statistics, but not enough yet
 - > wide range of energies: $O(10^{-1})$ GeV to $O(10^2)$ GeV
 - wide range of baselines: O(10) km to O(10⁴) km, half of them through the Earth
- Detailed and specific simulations are required to compute the neutrino flux
- SK discovered the atmospheric neutrino oscillations (Nobel 2015)

Atmospheric Neutrino Oscillations

Vacuum oscillations: neutrinos coming from above

$$\begin{split} |\overline{\nu}_l\rangle &= \sum_l U_{PMNS}^{li} |\overline{\nu}_i\rangle \\ U_{PMNS} &= \begin{pmatrix} c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \end{split}$$

Neutrino coming from below, pass through the Earth changing the effective Hamiltonian and thus, the neutrino propagation

$$H_{eff} = H_0 + H_{CC} = H_0 \pm \sqrt{2}G_F N_e \text{diag}(1,0,0)$$

- \succ matter potential is opposite for $\overline{\nu}s$
- > mass ordering changes the matter (MSW) effects between vs and $\overline{v}s$

SK Atmospheric Neutrino Oscillation Analysis

Atmospheric neutrinos are sensitive to crucial oscillation parameters:

- <u>Neutrino mass ordering</u>: e-like, > 1 GeV
 <u>Leptonic δ_{CP} phase</u>: < 1 GeV
- Octant of θ23: > 1 GeV

Analysis updates since last publication [Phys. Rev. D 97, 072001]

- SK-IV electronics allows for neutron tagging on hydrogen, with an efficiency of 25%
 - > New samples in SKIV for better single-ring v/\overline{v} separation *Hybrid analysis*

- > Usual sample scheme for SKI-III
- New event selection for Multi-Ring events based on Boosted Decision Tree
- New Monte-Carlo using **NEUT 5.4.0** with updated cross-section models and systematics
- Changed **zenith binning** to better target the **matter effects**
- Total of 3244.4 days

SK Atmospheric Neutrino Oscillation Analysis

SK Atmospheric Neutrino Oscillation Analysis

Results from the SK Atm. Neutrino Osc. Analysis

930 bins	χ2	θ ₁₃ (reac.)	δ_{CP}	θ_{23}	Δm ₂₃ (x10 ⁻³)
SK (NH)	1037.5	0.0218	4.36 ^{+0.88}	0.44 ^{+0.05} _{-0.02}	2.40 ^{+0.11} _{-0.12}
SK (IH)	1040.7	0.0218	4.54 ^{+0.88} _{-1.32}	0.45 ^{+0.09} _{-0.03}	2.40 ^{+0.09} _{-0.32}

Comparison with previous results

- Preference for normal mass ordering at C.L. 86%
- Stronger rejection of small values of CP-phase
- Data prefers first octant and the contours for θ_{23} are significantly more constraining

Explicit fit to the data (traditional SK atm. samples)

Explicit fit to the data (neutron-tagging SK atm. samples)

The hierarchy preference, a closer look

Significance resides mainly in the purity of v_e -like samples

 \rightarrow Improved in **Multi-Ring** with new event selection

→ Improved in Single-Ring with new sample definition using neutrons

The hierarchy preference, a closer look

Significance resides mainly in the purity of $\nu_{\rm e}\text{-like}$ samples

 \rightarrow Improved in Multi-Ring with new event selection

→ Improved in Single-Ring with new sample definition using **neutrons**

Results in context

Prospects for the SuperK-Gd Atm. v Osc. Analysis

The **SuperK-Gd** upgrade has finally started in July 2020

The detector is fully operational and acquiring data with its present Gd concentration. 0.011% Gd

 $\sim -50\%$ of neutron tagging efficiency (double the H-tagging eff.)

In addition to its impact to low energy physics, we have already seen the **importance of neutron tagging in the atm. v analysis** With greater neutron tagging efficiency:

- Much better classification of neutrinos and antineutrinos
- Improve the neutrino energy reconstruction, as they carry information about the invisible energy
- v_e (8 MeV) Gd-capture $\Delta t \sim 30 \ \mu s$

thermalisation

 γ -cascade

- Provide additional power in discriminating CC events from NC events
- Complementary studies and measurements will be needed, especially for the two last items as they rely on large neutron multiplicities (>10)

Conclusions

- After 25 years since the beginning, SK has rejuveneted once again to stay at the forefront of v physics → SuperK-Gd
- Discovery of neutrino oscillations in 1998 and currently providing some of the most precise measurements of the oscillation parameters
- Updated and upgraded atmospheric neutrino analysis
 - > Preference for large (~ $3\pi/2$) CP-phase values, agreeing with LBL experiments
 - Preference for normal mass ordering at 86% C.L.
 - > Preference for first octant of θ_{23}
- Expecting still improved performance and results from SuperK-Gd data and from the acquired experience over the years