

Measuring the proton Zemach radius with the FAMU experiment at RIKEN-RAL

M. Bonesini

Sezione INFN Milano Bicocca, Dipartimento di Fisica G. Occhialini, Universita' di Milano Bicocca

On behalf of the FAMU Collaboration

The proton radius puzzle

Spatial charge and magnetic moment distributions $\rho_E(r)$, $\rho_M(R)$ in non-relativistic picture .

The complete set of moments $R^{(k)}_{E,M} = \int \rho_{E,M}(r) r^k d^3r$ is related to the observable quantities:

$$r_{ch} = (R^{(2)}_E)1/2$$

 $R_Z = \int (\int \rho_F(r')\rho_M(r-r')d^3r'r)d^3r$

5.6σ discrepancy on r_{ch} has vanished, but still problems around

Large errors on $R_Z \rightarrow$ we need new measurements

The FAMU experimental method

- 1. Create muonic hydrogen in a hydrogen gas target and wait for its thermalization;
- 2. Laser shot at resonance wavelength ($\lambda_0 \sim 6.8 \mu$): spin state of μ -p from 1^1S_0 to 1^3S_1 , spin is flipped: μ -p($\uparrow \downarrow$) $\rightarrow \mu$ -p($\uparrow \uparrow \uparrow$);
- 3. De-excitation and acceleration: $\mu^-p(\uparrow \uparrow)$ hits a H atom. It is depolarized back to $\mu^-p(\uparrow \downarrow)$ and is accelerated by ~120 meV ~2/3 ΔE^{hfs}_{1S} ;
- 4. μ^{-} are transferred to heavier gas contaminant (O_2) with energy-dependent rate;
- 5. λ_0 is determined by maximizing the time distribution of μ -transferred events.
- 6.At this point ΔE_{HFS} is determined from: $\lambda_0 = hc/\Delta E^{1S}_{HFS} \sim 6.8 \, \mu \sim 0.183 \, eV$ and then R_Z with a precision $\sim 1\%$.

The FAMU experimental method (II)

 $1^{1}S_{0}(F=0)$

 $\Delta E^{hfs} \approx 182.443 \text{ meV}$

 $_{\it RZ}$ is then determined via QED with a precision up to 1%, more than enough to discriminate between different Hypothesis

$$\Delta E_{hfs} = \frac{16}{3} \alpha^2 c R_{\infty} (\frac{\mu_2}{\mu_1}) (\frac{\mu_1}{\mu_1^0})^2 (1 + \frac{m_e}{m_p})^{-3}) \times [1 + \frac{3}{2} \alpha^2 - 2 (\frac{r >_{Zemach}}{a_0}) + \beta + \delta]$$

Other μp HFS projects

	FAMU (UK)	PSI (CH)	RIKEN (JP)
Method	transfer	diffusion	asymmetry
Laser	DFG-MIR 1-5 mJ		QCL-seeded ZGP- OPO > 20 mJ in development
Detection	X-rays	X-rays	electrons
Beam	pulsed	continuos	Pulsed

The RIKEN-RAL muon facility at RAL

RIKEN-RAL facility

Typical beam size $\sim 10 \text{ cm}^2$ $\Delta p/p$ FWHM 10% (decay), 5% (surface) Double pulse structure (see below)

800 MeV p accelerator , 200 mA, 50 Hz

The RIKEN-RAL facility: 4 experimental ports. FAMU presently use port 1 and has used port 4 for previous runs.

The FAMU essential ingredients

- 1. Validation of X-rays detector system based on LaBr3:Ce in a noisy environment. Detection of X-rays both in the prompt and delayed component
- 2. Development of a high energy MIR laser system
 - Wavelength ~6780 nm
 - Line width < 0.07 nm</p>
 - Tunability ~0.007 nm
 - Repetition rate 50 Hz
 - Energy ~ 1 mJ

At this point the validity of the method to measure HFS is demonstrated

Fig. 2. The evolution of the energy spectra registered by one LaBr₃(Ce) detector (real data) at different times during and after the arrival of the double pulsed muon beam spill (see sec. 3.1).

WP - waveplate, Po - polarizer, M1-M5 - mirrors, T1 and T2 - telescopes, BS beamsplitters, DC1 - dichroic mirror (reflecting 1.26µm, transmitting 1.06µm), DC2 - dichroic mirror(reflecting 1.06 and 1.26 µm, transmitting 6.76µm)

Expected results from the final run & conclusions

Expected results with a 1 mJ/4 mJ laser energy

- □ All preliminary steps done and working
- ☐ Final data taking foreseen for March 2020. Delayed in steps to June 2021 due to COVID-19 pandemia
- \square We hope to have results soon on r_Z with 1% accuracy

Backup slides

Determination of r_z from ΔE^{hfs}

The determination of the Zemach radius from the experimental value of the hfs is based on the theoretical relation between the hyperfine splitting, the lowest order Fermi hyperfine energy E_F and the corrections to it δ^{QED} due to QED effects, δ^{rec} recoil, δ^Z the static electromagnetic structure of the proton, δ^{pol} to dynamical proton polarizability and δ^{hvp} to hadron vacuum polarization respectively:

$$\Delta E^{hfs} = E_F (1 + \delta^{QED} + \delta^{rec} + \delta^Z + \delta^{pol} + \delta^{hvp})$$

of these quantities E_F , δ^{QED} and δ^{rec} are known or calculable with accuracy $10^{\text{-}6}$ or better, and δ^{hvp} is small and may be neglected. this relations δ^Z is related to the Zemach radius r_Z by means of

$$\delta^Z = 2\alpha(1+k) \cdot \frac{M_\mu M_p}{M_\mu + M_p} \cdot r_Z$$

where M_{μ} and M_p are the particle masses and k=0.0152 is a QED correction, approximately $\delta^Z=-7.3\ 10^{-3}$.

Using phenomenological data the proton polarizability term δ^{pol} was evaluated to $\delta^{pol} = (4.6+-0.8) \ 10^{-4}$

the uncertainty in the value of the Zemach radius is limited by the uncertainty of δ^{pol} to about 1%.

The MIR laser system

The Nd:YAG will be at "fixed" wavelength 1064.14nm with linewidth max - 0.34pm (90MHz) and min - 0.11pm (30MHz).

The Cr:forsterite will have linewidth max - 1pm (188MHz) and min - 0.5pm (90MHz).

The Cr:forsterite will be tunable from 1252nm to 1272 nm which corresponds to tunability from 6500nm to 7090nm, which is 3765GHz. The required tunability 6760nm ±3nm corresponds to tunability range ~ 39GHz.

Final scheme of the DFG based laser system

Physics measurements: transfer rate $\mu p \rightarrow \mu O$

- Transfer rate measured as a function of temperature
 - Target filled H₂+(120 ppm)O₂ at 41 bar at 300 K
 - Six temperatures (300, 272, 240, 201, 153, 104 K)
 - Each temperature kept stable for three hours each
- At each trigger we acquire a window of 10 microsecond
 - Produce μp's and wait for their thermalization (about 150 ns)
 - Study the time evolution of Oxygen X rays

Some references for further infos

□ C. Pizzolotto et al., The FAMU experiment: muonic hydrogen high precision spectroscopy studies, Eur. Phys. J. A 56 (2020) 7, 185 ☐ M. Bonesini et al., Ce:LaBr₃ crystals with SiPM array readout and temperature control for the FAMU experiment at RAL, Published in: JINST 15 (2020) 05, C05065 ☐ E. Mocchiutti et al., First measurement of the temperature dependence of muon transfer rate from muonic hydrogen atoms to oxygen, Phys.Lett.A 384 (2020), 126667 ☐ M. Bonesini, The FAMU experiment at RIKEN RAL for a precise measure of the proton radius, PoS EPS-HEP2019 (2020), 132 □ R. Bertoni et al., Innovative amplifiers for muon spectroscopy experiments at RAL JINST 15 (2020) 03, C03020 ☐ M. Soldani et al., High performance DAQ for muon spectroscopy experiments. Nucl. Instr. Meth. A 936 (2019), 327☐ A. Adamczack et al., The FAMU experiment at RIKEN-RAL to study the muon transfer rate from hydrogen to other gases, JINST 13 (2018) 12, P12033 \Box E. Mocchiutti et al., First FAMU observation of muon transfer from μp atoms to higher-Z elements, JINST 13 (2018) 02, P02019 ☐ M. Bonesini et al., The construction of the Fiber-SiPM beam monitor system of the R484 and R582 experiments at the RIKEN-RAL muon facility, JINST 12 (2017), CO3035 ☐ M. Bonesini, The proton radius puzzle ,EPJ Web Conf. 164 (2017), 07048 ☐ A. Adamczack et al., Steps towards the hyperfine splitting measurement of the muonic hydrogen ground state: pulsed muon beam and detection system characterization, JINST 11 (2016) 05, P05007 \square R. Carbone et al., The fiber-SiPMT beam monitor of the R484 experiment at the RIKEN-RAL muon facility, JINST 10 (2015) 03, C03007