First constraints on coherent elastic neutrino-nucleus scattering at reactor site with the CONUS experiment

Aurélie Bonhomme Max-Planck-Institut für Kernphysik, Heidelberg on behalf of the CONUS collaboration

XIX Workshop on Neutrino Telescopes

Coherent elastic neutrino-nucleus scattering (CE ν NS)

- For low momentum transfer, interaction with the nucleus as a whole → cross-section enhancement
- ► Full coherency feature: $\sigma \propto N^2 \sin^2(\theta_w) \sim 0.238$ at low energies and $F(q^2) \sim 1$ fully coherent for $E_{\nu} \lesssim 30 \text{ MeV}$
- Only observable experimentally accessible: low energy recoil of the nucleus! T_{max} ∝ 1/A ⇒ very low energy threshold required!

Coherent elastic neutrino-nucleus scattering (CE ν NS)

- For low momentum transfer, interaction with the nucleus as a whole → cross-section enhancement
- ► Full coherency feature: $\sigma \propto N^2$ $\sin^2(\theta_w) \sim 0.238$ at low energies and $F(q^2) \sim 1$ fully coherent for $E_{\nu} \lesssim 30 \text{ MeV}$
- Only observable experimentally accessible: low energy recoil of the nucleus! T_{max} ∝ 1/A ⇒ very low energy threshold required!

Coherent elastic neutrino-nucleus scattering (CE ν NS)

- For low momentum transfer, interaction with the nucleus as a whole
 - \rightarrow cross-section enhancement
- Full coherency feature: $\sigma \propto N^2$ $\sin^2(\theta_w) \sim 0.238$ at low energies and $F(q^2) \sim 1$ fully coherent for $E_{\nu} \lesssim 30 \text{ MeV}$
- Only observable experimentally accessible: low energy recoil of the nucleus! $T_{max} \propto 1/A$ \Rightarrow very low energy threshold required!

Detecting CE ν NS: how and why?

 $\bar{\nu}_e$ from β -decays of fissile isotopes

running: <u>CONUS</u>, TEXONO... future: RICOCHET, NUCLEUS $u_{\mu}, \, \bar{\nu}_{\mu} \,$ and u_e from π -decay at rest

COHERENT @SNS: first observation Akimov et al., Science, 357, 6356, (2017)

Compact experiments, complementary approaches!

Weinberg angle measurements Beyond Standard Model: Non Standard Interactions, Neutrino Magnetic Moments... Nuclear structure

Reactor investigations

Aurélie Bonhomme (MPIK)

 $CE\nu NS$ with the CONUS experiment

The CONUS collaboration

Collaboration:

H. Bonet, A. Bonhomme, C. Buck, J. Hakenmüller, J. Hempfling, J. Henrichs, G. Heusser, T. Hugle, M. Lindner, W. Maneschg, T. Rink, H. Strecker - Max Planck Institut für Kernphysik (MPIK), Heidelberg

K. Fülber, R. Wink - Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf

Scientific cooperation:

R. Nolte, E. Pirovano, M. Reginatto, M. Zboril, A. Zimbal -Physikalisch-Technische Bundesanstalt (PTB), Braunschweig

The CONUS experimental site

The Brokdorf nuclear power plant (KBR) in Germany:

- ▶ site @17m from the **3.9 GW**_{th} reactor core $\sqrt{\text{ high } \bar{\nu}_e \text{ flux: } 10^{13} \bar{\nu}_e \text{ s}^{-1} \text{cm}^{-2}}$
- ▶ high duty-cycle √ 1 month/year of reactor-off
- shallow-depth site (24 m w.e.)
 x sensitive to cosmic-induced background
- reactor environment
 x potential reactor-induced background

Reactor site: ≠ laboratory conditions! no fresh air supply, changes in environmental conditions, no remote control, no cryogenic liquids allowed, earth quake safety requirements, restricted access...

The CONUS experimental setup

arXiv:2010.11241

4 p-type point contact HPGe (1kg each)

- very low background components
- ▶ pulser resolution (FWHM) $< 85 \text{ eV}_{ee}$ → threshold $\leq 300 \text{ eV}_{ee}$
- electric cryogenic cooling

Passive + active shield

- Lead with low ²¹⁰Pb content
- Borated PE, pure PE
- Active µ-veto (plastic scintillator)
- Flushing with air bottles

Background suppression

- External natural radioactivity and cosmogenic background: reduced by 10⁴
- Reactor correlated components (neutrons, gammas) negligible contribution compared to CEνNS Eur. Phys. J. C 79, 699 (2019)
- Residual background well understood, described by MC simulations

 $\begin{array}{l} \mbox{Background level in } [0.5-1] \ \mbox{keV}_{ee} {\rm :} \\ \mbox{10 counts/kg/d/keV}_{ee}, \ \mbox{stable} \end{array}$

Data selection Phys. Rev. Lett. 126, 041804 (2021)

Data quality cuts:

- No noise-temperature correlation
- Discrimination of microphonic and spurious events via time difference

Run-1 + Run-2 exposure: 248.7 kg d (reactor-on) 58.8 kg d (reactor-off)

Region of interest for $CE\nu NS$

Phys. Rev. Lett. 126, 041804 (2021)

Region Of Interest (ROI):

- ► Trigger efficiency ~100 %
- Electronic noise component described by an exponential, contribution < 4× MC

Det.	RUN	ON [d]	OFF [d]	ROI [keV _{ee}]
C1	1	96.7	13.8	0.296 - 0.75
C2	1	14.6	13.4	0.311 - 1.00
C3	1	97.5	10.4	0.333 - 1.00
C1	2	19.6	12.1	0.348 - 0.75
C3	2	20.2	9.1	0.343 - 1.00
Total		248.7	58.8	

Likelihood analysis Phys. Rev. Lett. 126, 041804 (2021)

Simultaneous fit (ON/OFF) – all detectors and runs:

$$\log \mathcal{L} = \log \mathcal{L}_{ON}(s, b, p_{thr}^1, p_{thr}^2, \{\phi_i\}) + \log \mathcal{L}_{OFF}(b, p_{thr}^1, p_{thr}^2, \{\phi_i\}) + \sum_{pulls} \frac{(\phi_i - \phi_0)^2}{2\sigma_i^2}$$

s: free signal normalization

- Theoretical prediction for $\mathsf{CE}\nu\mathsf{NS}$
- $\bar{\nu}_e$ reactor spectrum

(thermal power, fission fractions and Huber/Mueller + Daya Bay)

- Detector response

b: free background normalization

- MC modelling
- $-p_{thr}^1, p_{thr}^2$: electric noise description

Nuisance parameters for systematic uncertainties:

 ϕ_{rea} : reactor neutrino spectrum ($\sigma_{rea} \sim 3\%$) ϕ_{det} : active volume, DAQ: ($\sigma_{det} = 1-5\%$) ϕ_{escale} : energy scale uncertainty: ($\sigma_{escale} = 10-20 \text{ eV}_{ee}$)

First CE ν NS constraint from CONUS

Phys. Rev. Lett. 126, 041804 (2021)

Best CE ν NS limit at reactor:

$$<~0.4~d^{-1}kg^{-1}~(90\,\%\,C.L.)$$

Signal expectation: depends on the quenching factor

k > 0.27 disfavored for k = 0.18: limit 7x above prediction

 \rightarrow Need for a more precise measurement of the quenching factor in the keV range

Detector response: quenching of the $\bar{\nu}_e$ signal:

need to know $\mathbf{Q} \equiv \frac{\mathsf{E}_{ioniz}^{meas}}{\mathsf{E}_{nr}}$

 Experimentally: Extensively measured for 10-100 keV Data lacking in the keV range

Theoretically:

Lindhard parametrization of Q: \rightarrow Q(E) = f(k) Validity at low energy?

Direct, model-independent meas. using **neutrons** (nuclear recoils):

$$\mathbf{Q} \equiv \frac{\mathbf{E}_{\text{ioniz}}^{\text{meas}}}{\mathbf{E}_{\text{nr}}(\theta_{\text{lab}},\mathbf{E}_{\text{n}})}$$

Scientific cooperation with PTB*:

- Pulsed proton beam (tandetron) 1.25 MHz repetition frequency 2 ns resolution
- Mono-energetic neutrons via Li(p,n) reaction (hundreds of keV) → ~keV recoils in Ge ~ 10³n.cm⁻².s⁻¹ on Ge target 3% width @500keV

* Physikalisch-Technische Bundesanstalt Braunschweig, Germany

Direct, model-independent meas. using **neutrons** (nuclear recoils):

$$\mathbf{Q} \equiv \frac{\mathbf{E}_{\text{ioniz}}^{\text{meas}}}{\mathbf{E}_{\text{nr}}(\theta_{\text{lab}},\mathbf{E}_{\text{n}})}$$

Experimental setup:

- Neutron collimation
 Ø 35 mm beam at HPGe target
- Dedicated thin HPGe target 6 mm thick germanium crystal no material on beam axis FWHM: 135 eV @ 5.9 keV
- Liquid scintillators (LS) array low energy threshold, good PSD ~70% neutron detection eff.

$$\mathbf{Q} \equiv \frac{\frac{\mathbf{E}_{\text{ioniz}}^{\text{meas}}}{\mathbf{E}_{\text{nr}}(\theta_{\text{lab}},\mathbf{E}_{\text{n}})}$$

 $E_{nr}(\theta_{lab}, E_n)$: nuclear recoil energy

- Beam monitoring: detectors at 0°
 E_n from time-of-flight
- Scattering angles (θ_{lab}) at the 0.5° level

E^{meas}: ionization energy

- Energy scale in HPGe: regular calibration with Fe-55 Ge activation lines
- Signal selection via triple coincidence:

beam stop target HPGe LS detectors

 $\sim\!16\,h$ beam exposure (Oct. 2020) $\rightarrow\,$ probe nuclear recoils between 0.8 and 6 keV

- beam energy varied between 250 keV 800 keV
- angles varied between 18° and 45°

Combined analysis (96 points) with full treatment of systematic uncertainties on-going

Conclusions and perspectives

- Promising CE*v*NS neutrino detection channel now experimentally accessible ⇒ beam–/reactor–based experiments are complementary
- **CONUS experiment**, measuring reactor- $\bar{\nu}_e$ (NPP in Brokdorf) since April 2018
 - best limit on CEvNS with reactor neutrinos Phys. Rev. Lett. 126, 041804
 - detailed description of the Ge detectors arXiv:2010.11241
 - extended correlated background studies Eur. Phys. J. C 79, 699 (2019)
- Much more improvements to come in the near future:
 - Beyond Standard Model analyses
 - Extended dataset + reactor-OFF (reactor shut-down end of 2021)
 - DAQ upgrades: pulse shape studies
 - Quenching factor measurements in germanium

Thank you!