

KamLAND-Zen 800-

Hideyoshi Ozaki RCNS, Tohoku University for the KamLAND-Zen Collaboration

٠.

XIX International Workshop on Neutrino Telescopes, 2021/02/23

KamLAND-Zen Collaboration

KamLAND collaboration meeting in October 2020

KamLAND-Zen collaboration ~60 researchers ~20 institutions

Majorana neutrinos

<u>Δm², θ SK, SNO, KamLAND, etc</u> <u>δCP T2K, NOvA</u>

Neutrino mass hierarchy Δm^2 atm $\sim 2.5 \times 10^{-3} eV^2$, Δm^2 solar $\sim 7.4 \times 10^{-5} eV^2$

<u>Dirac or Majorana?</u>

If Majorana neutrinos exist

Seesaw mechanism

Extremely small neutrino mass

Leptogenesis

eV

leutrinos

Particle mass

MeV

GeV

Quarks

 m_D^2

 M_R

 M_{R}

Leptons

 $m \sim$

keV

How to find Majorana nature of neutrinos -> Neutrinoless Double-Beta Decay(0vββ)

KamLAND-Zen Zero neutrino double beta decay search, Xenon

Inner-balloon (IB) Zen 400 ~3.0 m-diameter V=16.7 m³ Zen 800 ~3.8 m-diameter V=30.5 m³

 $\times 2$ larger

KamLAND + Xe

- KamLAND <u>Ultra-low BG detector</u>
 - Low radioactivity ${}^{238}\text{U} \sim 5.0 \times 10^{-18} \text{ g/g}$, ${}^{232}\text{Th} \sim 1.3 \times 10^{-17} \text{ g/g}$
 - Cosmic-ray muon $\sim 0.2 \text{ Hz}$
 - Active shielding

• Xenon

- Chemically stable noble gas
- Solubility: Xe-LS ~3 wt%
- Large mass&enrichment 745 \pm 3 kg of ¹³⁶Xe ~91wt% enriched Xe
- High Q-value: 2.458MeV (Low BG in KamLAND)
- Slow ¹³⁶Xe $2\nu\beta\beta$ decay -> less $2\nu\beta\beta$ tail due to energy resolution

• KamLAND-Zen

- Scalability
- ¹³⁶Xe On-off

Event reconstruction

Reconstructed single event positions (1.0 MeV-3.0 MeV)

7

Zen 800: ²¹⁴Bi-²¹⁴Po, (n,p)γ 2.22 MeV

2νββ

History of KamLAND-Zen 400

KamLAND-Zen 800 construction

Target: Doubling Xe amount Reducing ²¹⁴Bi from IB

2

 $(r/100.1)^3$

Ultra-low BG Inner-balloon(IB)

Fabricated in class-1 cleanroom in Sendai

25 µm-thick nylon film

3.8 m diameter inner-balloon

Dust from workers is the main source of contamination.

Backgrounds (R<157 cm)

Zen 800 ROI: 2.35 MeV \leq E \leq 2.70 MeV, 0v $\beta\beta$ efficiency \sim 90%

Source:2νββRadioactive impurities:Xe-LS, IB and outer-LSCosmogenic:muon-spallationSolar neutrinoES

<u>(Gando @TAUP2019)</u> 2vββ tail due to energy resolution Most dominant & inevitable BG $\Delta E \sim 4.5\%$ @2.45 MeV ~ 5.1 events/ROI

²¹⁴Bi from IB film

Vertex resolution ~15 cm/ $\sqrt{E(MeV)}$ Limit sensitive region to $0\nu\beta\beta$ decay. ~ 0.9 events/ROI

¹²C spallation products

Significantly reduced by new analysis methods ~ 0.2 events/ROI

Solar neutrino electron scattering + C.C. (^{136}Cs) Inevitable BG ~ 0.4 events/ROI

Backgrounds (R<157 cm)

Zen 800 ROI: 2.35 MeV \leq E \leq 2.70 MeV, 0v $\beta\beta$ efficiency \sim 90%

Source:2νββRadioactive impurities:Xe-LS, IB and outer-LSCosmogenic:muon-spallationSolar neutrinoES

<u>(Gando @TAUP2019)</u> 2vββ tail due to energy resolution Most dominant & inevitable BG $\Delta E \sim 4.5\%$ @2.45 MeV ~ 5.1 events/ROI

²¹⁴Bi from IB film

Vertex resolution ~15 cm/ $\sqrt{E(MeV)}$ Limit sensitive region to $0\nu\beta\beta$ decay. ~ 0.9 events/ROI

 ^{12}C spallation products Significantly reduced by new analysis methods ~ 0.2 events/ROI

Solar neutrino electron scattering + C.C. (^{136}Cs) Inevitable BG ~ 0.4 events/ROI

¹³⁶Xe spallation products

Nuisance BG in Zen800 Hard to reject because of their long-lives

Radioactive impurity (Xe-LS) ^{BGs} ²³⁸U series ... ²¹⁴Bi ²³²Th series ... Pileup(²¹²Bi+²¹²Po)

Radioactive impurity (IB film)

Backgrounds from cosmic-ray muons

Prospects for Improvements and future plans

Summary

- KamLAND-Zen 800 is stably running with the goal of searching for $0\nu\beta\beta$ within the IH region.
- We successfully characterized and reduced backgrounds.
 - Constructed an ultra-low background IB
 - Strongly reduced ¹²C-spallation by analysis
 - Successfully characterized ¹³⁶Xe-spallation
- The latest results will be published very soon.