DARWIN observatory

- Neutrino physics with an ultimate Dark Matter detector

Andrii TERLIUK on behalf of the DARWIN collaboration

25 February 2021 NeuTel 2021

A hunt for Dark Matter

> Excellent progress in Dark Matter search in the last decades

Good Dark Matter detector makes an excellent neutrino experiment!

Evolution of XENON detectors

3.2 tons

2.0 tons

8.3 tons

5.9 tons

UNIVERSITÄT HEIDELBERG | Neutrino physics with DARWIN | Neutrino Telescopes 2021 | Andrii Terliuk |

25 kg

14 kg

161 kg

62 kg

Total mass

Active mass

50 tons

40 tons

What is DARWIN observatory?

- Time-projection chamber
 - 40 "active" tons of LXe
 - 2.6 m in diameter and height
 - Baseline: 955+955 3" PMTs
 - PTFE reflectors for efficiency

- Goal low background
 - Deep underground (3500 m.w.e @ LNGS, other labs in consideration)
 - Ultra-low background cryostat
 - Outer neutron and muon veto

> Truly multi-purpose rare-event search experiment!

Dual phase TPC

- Complete reconstruction of 3D events
- Good energy resolution
- Electron/nuclear recoil discrimination based on S2/S1 size

Physics prospects with DARWIN

Physics prospects with DARWIN

Neutrinoless double beta decay

- Access to potential Majorana nature of neutrinos
- > 40 tons of xenon in active volume:
 - 8.9% of ¹³⁶Xe \rightarrow **3.5** t in active volume
 - Potential candidate for 0νββ

 136 Xe $\rightarrow ^{136}$ Ba + 2 e^- + \sim

- Q value = 2458 keV
- > All key components for success:
 - Large mass
 - Good position resolution
 - Good energy resolution (XENON1T: Eur. Phys. J. C80, 785 (2020))
 - Low background

Identifying double beta decays

- > $0\nu\beta\beta$ signal:
 - Two electrons with ΣE = $Q_{_{\beta\beta}}$
 - Low probability to emit Bremsstrahlung photon $\ \ \rightarrow$ "single site events"
- > Background:
 - gammas \rightarrow Compton scattering \rightarrow multiple sites
 - Beta (electrons) → (sometimes) Bremsstrahlung → multiple sites
- > For our studies:
 - Cluster search on Geant4 output
 - Conservative ε=15 mm estimate
 - Likely large room for improvement

Energy resolution

Eur. Phys. J. C80, 785 (2020)

> Potential of improvement (dedicated HE readout, improved reconstructions)

Material backgrounds

Masses of components

Component	Material	Mass
Outer cryostat Inner cryostat	Titanium Titanium	$\begin{array}{c} 3.0\mathrm{t} \\ 2.1\mathrm{t} \end{array}$
Bottom pressure vessel	Titanium	$0.4\mathrm{t}$
LXe instrumented target LXe buffer outside the TPC LXe around pressure vessel GXe in top dome + TPC top	LXe LXe LXe GXe	$\begin{array}{c} 39.3{\rm t} \\ 9.0{\rm t} \\ 270{\rm kg} \\ 30{\rm kg} \end{array}$
TPC reflector (3mm thickness) Structural support pillars (24 units) Electrode frames Field shaping rings (92 units)	PTFE PTFE Titanium Copper	$146 { m kg}$ $84 { m kg}$ $120 { m kg}$ $680 { m kg}$
Photosensor arrays (2 disks): Disk structural support Reflector + sliding panels Photosensors: 3" PMTs (1910 units) Sensor electronics (1910 units)	Copper PTFE composite composite	$520 \mathrm{kg}$ 70 kg 363 kg 5.7 kg

Conservative activity estimates (current materials from > XENON and LZ)

Material	Unit	$^{238}\mathrm{U}$	226 Ra	$^{232}\mathrm{Th}$	$^{228}\mathrm{Th}$	60 Co	$^{44}\mathrm{Ti}$
Titanium	mBq/kg	< 1.6	< 0.09	0.28	0.25	< 0.02	< 1.16
PTFE	mBq/kg	< 1.2	0.07	$<\!0.07$	0.06	0.027	-
Copper	mBq/kg	< 1.0	$<\!0.035$	< 0.033	< 0.026	$<\!0.019$	-
\mathbf{PMT}	mBq/unit	8.0	0.6	0.7	0.6	0.84	-
Electronics	mBq/unit	1.10	0.34	0.16	0.16	< 0.008	-

- Fiducialization to reject >
- Cleaner materials are possible >

 10^{-2} 1000 30t Background Rate [events ·t⁻ 500 z [mm] -500-10001000² 600² 1300² r² [mm²] DARWIN ($M_{FV} = 20t$) $0\nu\beta\beta$ ROI 208

Intrinsic backgrounds

- ²²²Rn in LXe: >
 - 0.1 µBq/kg (x10 lower than XENONnT)
 - 99.8 % rejection with Bi-Po tagging
- ⁸B solar neutrinos (v-e scattering): >
 - Irreducible flat background
- > $2\nu\beta\beta$ of ¹³⁶Xe:
 - Negligible due to good energy resolution
- Decay of 137Xe >
 - Neutron activation due to cosmogenic muons

 $n + {}^{136}Xe \rightarrow {}^{137}Xe$

- 6.9 atoms/(t·yr) at 3500 m.w.e. depths (LNGS)
- Better at deeper laboratories

Eur. Phys. J. C80, 808 (2020)

Expected sensitivity to $0\nu\beta\beta$

- > Optimal 5t fiducial volume:
 - Main remaining backgrounds : ²¹⁴Bi and ¹³⁷Xe
- > Expected sensitivity after 10 years (baseline)

$$T_{1/2} = 2.4 \cdot 10^{27}$$
 years (90 % C.L.)

- Further improvements are possible
 - Better materials
 - Better analysis
 - Going deeper

Solar neutrinos with DARWIN

>

Eur. Phys. J. C 80, 1133 (2020)

- Precise measurements of solar survival probability and electroweak mixing angle using pp neutrinos
- > Further improvements possible with depleted target

Supernova neutrinos

Expect hundreds/thousands events for a galactic supernova due to CEvNS in nuclear recoil band

- Sensitive to all six neutrino flavours complementary to other experiments
- > S2 only analysis to reduce threshold
- Sensitive to supernovas up to Small Magellanic Cloud
- Can be used as a supernova alert system for multi-messenger measurements

Phys. Rev. D94 (2016) no.10, 103009

Supernova neutrinos

Phys. Rev. D94 (2016) no.10, 103009

- > Access to differential spectra of SN neutrinos
- > Window to measure and constrain properties of supernova explosion

DARWIN collaboration

>

Summary

- > DARWIN is a truly multi-purpose detector
- > Extensive neutrino physics program:
 - Neutrinoless double beta decay
 - Solar neutrinos
 - Supernova neutrinos
 - And many other topics
- > Expecting data in 2027
- > Stay tuned:
 - More R&D
 - New physics prospects

