

Dipartimento di Fisica e Astronomia Galileo Galilei

XIX International Workshop on Neutrino Telescopes

Flash Talk session

γ Background Reduction in 0 uetaeta Searches with Organic Compound Holder

"An acrylic assembly for low temperature detectors" to be submitted to EPJ-Plus "Organic compounds for rare events physics" submitted to Nuovo Cimento C

Authors: <u>Stefano Ghislandi</u>^{(1)®}, Matteo Biassoni⁽²⁾, Chiara Brofferio⁽²⁾⁽³⁾, Marco Faverzani⁽²⁾⁽³⁾, Elena Ferri⁽²⁾⁽³⁾, Irene Nutini⁽²⁾⁽³⁾, Stefano Pozzi⁽²⁾⁽³⁾, Simone Quitadamo⁽¹⁾

- ⁽¹⁾ Gran Sasso Science Institute, L'Aquila, Italy
- ⁽²⁾ INFN Section of Milano-Bicocca, Milan, Italy
- ⁽³⁾ University of Milano-Bicocca, Department of Physics, Milan, Italy

18-26 February 2021

Stefano Ghislandi

XIX International Workshop on Neutrino Telescopes

orcid.org/0000-0003-0232-1249

Organic compounds in Calorimetric $0\nu\beta\beta$ Searches with TeO₂

Neutrinoless double beta decay $(0\nu\beta\beta)$ searches with TeO₂ thermal detectors

Required very low background (especially around the Q-value peak @ 2527 keV for ¹³⁰Te)

Main target: reduce the γ background in the Region Of Interest (ROI)

MAIN γ BACKGROUND SOURCE

Passive material with high Z and a high ρ close to the detectors

2615 keV γ 's from $^{208}{\rm TI}$ ($^{232}{\rm Th}$ chain) contained as contaminant

PROPOSAL

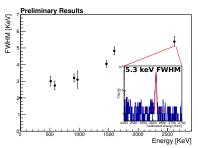
Detector holders made of Acrylic

- Reduced Compton scattering probability
- Possibility to employ the organic compound as scintillator
- 3D printed structures

Background events due to Compton scattering with the frame

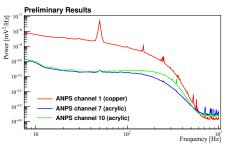
Experimental Setup and Holder Characterization

STABILITY

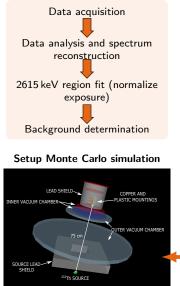

Very good baseline stability over 50 hrs run, same as channels from copper tower

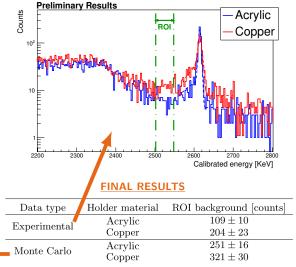
SIGNAL SHAPE

Faster pulses from acrylic holder when working at the optimal point (slightly higher temperature wrt copper)

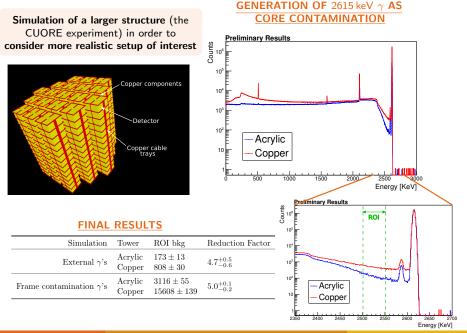

Useful to reduce pile-up

ACRYLIC RESOLUTION




NOISE PROPERTIES

Background Reduction



SPECTRA COMPARISON

ROI background in acrylic lower @ 3.8 σ

Replacement Simulation in a Real Experiment

- No issues encountered during the cool-down;
- · Good mechanical properties for acrylic at milli-Kelvin scale;
- Good energy resolution (5 keV @ 2615 keV), same as detectors in copper holder;
- Acrylic noise not degradated and comparable to the copper one;
- At the same heat sink temperature, faster pulses for acrylic;
- In acrylic, the ROI γ background is lower than the one in copper 3.8 σ , compatible with Monte Carlo simulations (1.2 σ).

Acrylic replacement in CUORE

- ROI γ background reduction of a factor 4.7 for photons out of the innermost structure;
- \bullet ROI γ background reduction of a factor 5 for photons produced as core contamination in the holder.

Perspectives

• Possibility to use acrylic as scintillator, increasing the background rejection power.

- No issues encountered during the cool-down;
- Good mechanical properties for acrylic at milli-Kelvin scale;
- Good energy resolution (5 keV @ 2615 keV), same as detectors in copper holder;
- Acrylic noise not degradated and comparable to the copper one;
- At the same heat sink temperature, faster pulses for acrylic;
- In acrylic, the ROI γ background is lower than the one in copper 3.8 σ , compatible with Monte Carlo simulations (1.2 σ).

Acrylic replacement in CUORE

- ROI γ background reduction of a factor 4.7 for photons out of the innermost structure;
- ROI γ background reduction of a factor 5 for photons produced as core contamination in the holder.

Perspectives

• Possibility to use acrylic as scintillator, increasing the background rejection power.

- No issues encountered during the cool-down;
- Good mechanical properties for acrylic at milli-Kelvin scale;
- Good energy resolution (5 keV @ 2615 keV), same as detectors in copper holder;
- Acrylic noise not degradated and comparable to the copper one;
- At the same heat sink temperature, faster pulses for acrylic;
- In acrylic, the ROI γ background is lower than the one in copper 3.8 σ , compatible with Monte Carlo simulations (1.2 σ).

Acrylic replacement in CUORE

- ROI γ background reduction of a factor 4.7 for photons out of the innermost structure;
- ROI γ background reduction of a factor 5 for photons produced as core contamination in the holder.

Perspectives

• Possibility to use acrylic as scintillator, increasing the background rejection power.

- No issues encountered during the cool-down;
- Good mechanical properties for acrylic at milli-Kelvin scale;
- Good energy resolution (5 keV @ 2615 keV), same as detectors in copper holder;
- Acrylic noise not degradated and comparable to the copper one;
- At the same heat sink temperature, faster pulses for acrylic;
- In acrylic, the ROI γ background is lower than the one in copper 3.8 σ , compatible with Monte Carlo simulations (1.2 σ).

Acrylic replacement in CUORE

- ROI γ background reduction of a factor 4.7 for photons out of the innermost structure;
- ROI γ background reduction of a factor 5 for photons produced as core contamination in the holder.

Perspectives

• Possibility to use acrylic as scintillator, increasing the background rejection power.