

Search for neutrinos in coincidence with GWTC-2 events in the Super-Kamiokande detector NeuTel conference

Mathieu Lamoureux (INFN Sezione di Padova, Italy) for the Supér-Kamiokande collaboration

Since 2015, the LIGO/Virgo Collaboration (LVC) is detecting and sending alerts for gravitational waves from the merger of binary objects.

- Binary Neutrino Star (BNS): may produce short
   Gamma-Ray Bursts (GRB) with neutrino production\*
- Binary Black Hole (BBH): neutrino production in the accretion disks of the black holes<sup>†</sup>
- Neutron Star Black Hole (NSBH)



Detecting coincident neutrinos from these objects would allow better understanding of the mechanisms behind them.

<sup>\*</sup>Foucart, F., et al (2016). Low mass binary neutron star mergers: Gravitational waves and neutrino emission. Physical Review D, 93(4). 10.1103/PhysRevD.93.044019

<sup>†</sup>Caballero, O. L., et al (2016). Black hole spin influence on accretion disk neutrino detection. 10.1103/PhysRevD.93.123015

## GWTC-2 catalogue

- LIGO-Virgo Third Observing Run (O3) covered April 2019 to March 2020
  - ⇒ 56 alerts provided in realtime through GCN
- GWTC-2 covers the first half of O3 (April 2019 September 2019)
  - $\Rightarrow$  39 confirmed detections  $\neq$  focus of this talk

#### For each GW, we have:

- time of the event
- sky localisation
- estimated distance
- estimated masses of the two objects
- can be roughly classified based on masses  $(m < 3 \,\mathrm{M}_{\odot} = \mathrm{NS}, \ m > 3 \,\mathrm{M}_{\odot} = \mathrm{BH})$



Experiment running since 1998, located in the Mozumi mine in Japan.









Four samples covering the neutrino energy range from few MeV to  $\mathcal{O}(\text{TeV})$ :

- low-energy (LOWE)
- fully-contained events (FC)
- partially-contained events (PC)
- upgoing muons (UPMU)

LOWE is usually used for solar/supernova analyses.



Flash Wed.24 Alice, Spallation

The other samples are mainly used for atmospheric analysis.

Parallel Wed.24 Pablo, Atmospherid localisation (only for high-energy SK samples)

- Define a  $\pm 500$  s centered on GW time
- Search for events within this time window, in the four SK samples
- Compare observation with expected background and extract neutrino flux upper limits and compute eventual signal significance by comparing neutrino directions and GW

| Low-energy sample                                                                     | FC                             | <b>High-energy sample</b> PC | s<br>UPMU |
|---------------------------------------------------------------------------------------|--------------------------------|------------------------------|-----------|
| Standard solar/SRN selection<br>+ 7 MeV energy threshold<br>to ensure stable bkg rate | Standard atmospheric selection |                              |           |
| expected background in 1000 seconds $= 0.729$                                         | 0.112                          | 0.007                        | 0.016     |

Performed the analysis for the 39 GW in GWTC-2. Three of them were associated to SK downtime (due to calibration) (one less for low-energy due to HV issues).



#### In total:

| Sample            | $N_{ m obs}$ | $N_{ m exp}$ |
|-------------------|--------------|--------------|
| $\mathbf{LOWE} +$ | 24           | 24.97        |
| FC*               | 8            | 3.95         |
| PC⋆               | 0            | 0.26         |
| <b>UPMU</b> ⋆     | 2            | 0.58         |
|                   |              |              |

Preliminary

No significant excess was observed in the follow-up analysis.

## Ten SK high-energy events in time coincidence



How likely the SK observation is associated to background, given time+space correlations?

The p-value can be dissociated in  $p = p_{\mathrm{time}} imes p_{\mathrm{space}}$  , with:

- $p_{\mathrm{time}} = \mathrm{Prob}(\mathit{N} \geq 1) = 1 e^{-\mathit{n}_B} \sim 12.6\%$  for  $\mathit{n}_B = \mathsf{total}$  background (FC+PC+UPMU) = 0.13
- p<sub>space</sub> is obtained by comparing neutrino direction and GW localisation\*
  - For each sample (k = FC, PC or UPMU), define the point-source likelihood  $\mathcal{L}_{\nu}^{(k)}(n_S^{(k)}, \gamma; \Omega_S)$  that separates background from signal ( $dn/dE \propto E^{-\gamma}$ , direction  $\Omega_S$ ).
  - Compute the maximum log-likelihood ratio  $\Lambda$  (GW localisation  $\mathcal{P}_{GW}$  used as prior) and find the source direction  $\Omega_S$  that maximises it:

$$\Lambda(\Omega_S) = 2\sum_k \ln \left[ \frac{\mathcal{L}_{\nu}(\widehat{n_S^{(k)}}, \widehat{\gamma^{(k)}}; \Omega_S)}{\mathcal{L}_{\nu}(n_S^{(k)} = 0; \Omega_S)} \right] + 2 \ln \mathcal{P}_{GW}(\Omega_S) \text{ and } \boxed{\mathsf{TS} = \max_{\Omega} \left[ \Lambda(\Omega) \right]}$$

ullet Compare  $TS_{
m data}$  with the expected background distribution (with  $N\geq 1$ ) to obtain  $p_{
m space}$ .

<sup>\*</sup>IceCube collaboration. IceCube Search for Neutrinos Coincident with Compact Binary Mergers from LIGO-Virgo's First Gravitational-wave Transient Catalog. Astrophys.J.Lett. 898 (2020) 1, L10



The most significant GW+ $\nu$  is for GW190602\_175927:

$$p_{\text{space}} = 1.72\%, p = 0.22\%$$

Considering the number of trials (N = 10 GW+ $\nu$  time coincidences), we get **post-trial** p-value:

$$P_{\text{space}} = 15.9\%$$

For  $p=p_{\rm time} \times p_{\rm space}$ , the number of trials is the total number of GW follow-ups (N=36) and we get:

$$P = 7.8\%$$

# High-Energy Flux limits (1)

The neutrino flux is assumed as  $\frac{dn}{dE_{\nu}} = \phi_0 E_{\nu}^{-2}$  and  $N_{\text{expected signal}} = \int_{E_{\text{min}}}^{E_{\text{max}}} \mathrm{d}E_{\nu} A_{\text{eff}}^{s,f}(E_{\nu},\theta) \times \frac{dn}{dE_{\nu}}$ .

### Sample-by-sample flux limits

For each sample and flavour  $(\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu)$ , we define the flux likelihood:

$$\mathcal{L}(\phi_0; n_B, N) = \int \frac{(c(\Omega)\phi_0 + n_B)^N}{N!} e^{-(c(\Omega)\phi_0 + n_B)} \mathcal{P}_{\mathrm{GW}}(\Omega) d\Omega$$
 with  $c(\Omega) = \int_{E_{\mathrm{min}}}^{E_{\mathrm{max}}} \mathrm{d}E_{\nu} A_{\mathrm{eff}}(E_{\nu}, \theta) E_{\nu}^{-2}$  and the 90% U.L on the flux  $\phi^{\mathrm{up}}$  is obtained by solving  $\int_{0}^{\phi^{\mathrm{up}}} \mathcal{L}(\phi) d\phi = 0.9$ 

### Combined flux limits

Limits combining FC, PC and UPMU are obtained by using the combined TS defined before (details in backup).

Effective area  $A_{\rm eff}$ 



# High-Energy Flux limits (2)

#### Example of limits for $\nu_{\mu}$ flavour:



Better limits with the UPMU sample when the GW is below the local horizon. Combined limits is close to the best individual one.

- The total energy in  $\nu$  from the source (assuming isotropic) is  $E_{\rm iso} = 4\pi d^2 \int \frac{{\rm d}n}{{\rm d}E} \times E \, {\rm d}E$  $\Rightarrow E_{\rm iso}$  limits obtained by using the 3D localisation skymap from the LVC data release.
- We can stack events by nature, assuming same emission (or  $E_{\rm iso} \propto M_{\rm source}$  in backup).

### Individual limits on $E_{\rm iso}^{\nu_{\mu}}$



### Stacked limits on $E_{iso}^{all-flavours*}$



<sup>\*</sup>This is done assuming the flux at Earth is equally distributed between the flavours ( $\nu_e: \nu_\mu: \nu_\tau=1:1:1$ )

- For low-energy analysis, the case is simpler as effective area does not depend on direction.
- Upper limits on fluence are obtained assuming Fermi-Dirac ( $\langle E \rangle = 20\,\text{MeV}$ ) or flat spectrum:  $\Phi_{90} = \frac{N_{90}}{N_{\mathrm{Target}} \int \lambda(E_{\nu}) \sigma(E_{\nu}) R(E_{\mathrm{e}}, E_{\mathrm{vis}}) \epsilon(E_{\mathrm{vis}}) \, \mathrm{d}E_{\nu}} \text{ with } \lambda(E_{\nu}) = \text{F.-D. or Const.}$
- $\begin{array}{l} \bullet \text{ Typical fluence limits: } \left\{ \begin{array}{l} \Phi(\nu_e) \lesssim 5 \times 10^9 \, \text{cm}^{-2}, & \Phi(\bar{\nu}_e) \lesssim 1 \times 10^8 \, \text{cm}^{-2} \\ \Phi(\nu_x) \lesssim 3 \times 10^{10} \, \text{cm}^{-2}, & \Phi(\bar{\nu}_x) \lesssim 4 \times 10^{10} \, \text{cm}^{-2} \; (\nu_x = \nu_{\mu,\tau}) \end{array} \right. \end{array}$
- $E_{\rm iso}$  limits are obtained as in the high-energy case, using the LVC distance estimate:  $E_{\rm iso}^{\bar{\nu}_e} < 9.59 \times 10^{57}\,{\rm erg}$  for GW190425 ( $d\sim 160\,{\rm Mpc}$ )

- Follow-up analysis of GWTC-2 events have been done using the four SK samples (low-energy, FC, PC, UPMU).
- No excess has been observed with respect to expected background.
- Most significant observation is for GW190602\_175927 (FC event  $\sim$  300 s before the GW, with compatible direction)  $\Rightarrow$  **post-trial p-value is** 7.8% (1.4 $\sigma$ )
- Flux limits have been computed:
  - **High-Energy:**  $E^2 rac{dn}{dE} \Big|_{
    u_{\mu}} \lesssim 4 imes 10^1 \, {
    m GeV \, cm^{-2}}$  if GW is below the horizon (2 imes 10 $^3$  otherwise)
  - Low-energy:  $\Phi(\bar{\nu}_e) \lesssim 1 \times 10^8 \, \text{cm}^{-2}$
- $E_{\rm iso}$  were also extracted, independently event-by-event or stacking events of the same nature (assuming  $E_{\rm iso} = {\sf Const.}$  or  $E_{\rm iso} \propto \mathcal{M}_{\rm tot}$ )
- Publication coming soon with detailed results for O3a events.
- Future: possible realtime follow-up (within few days) from O4

This presentation was made on behalf of the Super-Kamiokande collaboration







This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754496.

## Backups

#### Preliminary

| Trigger                      | Sample | $\Delta t$ [s] | E [GeV] | RA [deg] | Dec [deg] | $\delta$ [deg] | p-value [%] |
|------------------------------|--------|----------------|---------|----------|-----------|----------------|-------------|
| GW190424_180648              | FC     | 104.03         | 0.57    | 210.82   | -58.74    | 52.08          | 48.55       |
| GW190426_152155              | UPMU   | 278.99         | 9.52    | 352.37   | -8.46     | 2.15           | 100.00      |
| GW190513_205428              | FC     | -183.27        | 0.68    | 279.34   | -37.27    | 41.19          | 8.59        |
| GW190527_092055              | FC     | 248.41         | 0.48    | 54.09    | 18.80     | 52.08          | 58.93       |
| GW190602_175927              | FC     | -286.52        | 2.75    | 93.67    | -38.90    | 16.22          | 1.72        |
| GW190620 <sub>-</sub> 030421 | UPMU   | -327.70        | 2.33    | 177.69   | -35.59    | 8.04           | 100.00      |
| GW190728_064510              | FC     | 102.99         | 0.19    | 300.45   | 29.71     | 92.51          | 21.02       |
| GW190814                     | FC     | 250.36         | 1.21    | 157.59   | -9.47     | 28.26          | 100.00      |
| GW190910_112807              | FC     | 301.42         | 1.08    | 160.13   | -22.70    | 32.09          | 57.11       |
| GW190924_021846              | FC     | 411.87         | 0.30    | 281.38   | -54.52    | 73.58          | 50.49       |

• Flux: We define the following likelihood by using the TS defined before:

$$\mathcal{L}(\phi_0; \mathit{TS}_{\text{data}}, \mathcal{P}_{\mathit{GW}}) = \int \sum_{k=0}^{2} \left[ \frac{\left( c(\Omega)\phi_0 \right)^k}{k!} e^{-c(\Omega)\phi_0} \times \mathcal{P}_k(\mathit{TS}_{\text{data}}) \right] \times \mathcal{P}_{\mathit{GW}}(\Omega) \, \mathrm{d}\Omega$$

where  $P_i(TS)$  is the distribution of the test statistic assuming the signal consists in i events, assuming  $E^{-2}$  spectrum  $(dn/dE = \phi_0 E^{-2})$ . The 90% upper linit is obtained as above  $(\int_0^{\phi_0^{\rm up}} \mathcal{L}(\phi_0) d\phi_0 = 0.90)$ .

• **Total energy:** Same for  $E_{iso}$  limits:

$$\mathcal{L}(E_{\mathrm{iso}}; TS_{\mathrm{data}}^{(i)}, \mathcal{V}_{GW}^{(i)}) = \int \sum_{k=0}^{2} \left[ \frac{\left(c'(r, \Omega)E_{\mathrm{iso}}\right)^{k}}{k!} e^{-c'(r, \Omega)E_{\mathrm{iso}}} \times \mathcal{P}_{k}^{(i)}(TS_{\mathrm{data}}^{(i)}) \right] \times \mathcal{V}_{GW}^{(i)}(r, \Omega) d\Omega$$

For each sample k, we define the likelihood:

$$\mathcal{L}_{\nu}^{(k)}(n_{S}^{(k)}, \gamma; \Omega_{S}) = \frac{e^{-(n_{S}^{(k)} + n_{B}^{(k)})}(n_{S}^{(k)} + n_{B}^{(k)})^{N^{(k)}}}{N^{(k)}!} \prod_{i=1}^{N^{(k)}} \frac{n_{S}^{(k)} \mathcal{S}^{(k)}(\vec{x_{i}}, E_{i}; \Omega_{S}, \gamma) + n_{B}^{(k)} \mathcal{B}^{(k)}(\vec{x_{i}}, E_{i})}{n_{S}^{(k)} + n_{B}^{(k)}}$$

where  $S^{(k)}$  and  $B^{(k)}$  are the signal/background p.d.f. (characterizing detector response). Then, we compute the log-likelihood ratio:

$$\Lambda(\Omega_S) = 2 \sum_k \ln \left[ \frac{\mathcal{L}_{\nu}(\widehat{n_S^{(k)}}, \widehat{\gamma^{(k)}}; \Omega_S)}{\mathcal{L}_{\nu}(n_S^{(k)} = 0; \Omega_S)} \right] + 2 \ln \mathcal{P}_{GW}(\Omega_S)$$

The final test statistic and p-value are:

$$TS = \max_{\Omega} [\Lambda(\Omega)]$$
 and  $p_{ ext{space}} = \int_{TS_{ ext{data}}}^{\infty} \mathcal{P}_{ ext{bkg}}(TS) \, \mathrm{d}TS$ 

where  $\mathcal{P}_{\mathrm{bkg}}(\mathit{TS})$  is the expected background distribution.

# Detailed results for GW190425 (BNS, $d = 0.16 \,\mathrm{Gpc}$ )

| Trigger name | Sample                 |               | $ u_{e}$             | $ar{ u}_{e}$         | $ u_{\mu} \ ( u_{x})$ | $ar{ u}_{\mu} \; (ar{ u}_{	imes})$ |
|--------------|------------------------|---------------|----------------------|----------------------|-----------------------|------------------------------------|
|              | HE $E^2 \frac{dn}{dE}$ | FC            | $2.22\cdot 10^3$     | $4.32\cdot 10^3$     | $3.91\cdot 10^3$      | $9.42\cdot 10^3$                   |
|              | UL.                    | PC            | $3.32 \cdot 10^{4}$  | $1.12\cdot 10^5$     | $4.81\cdot 10^3$      | $8.74\cdot 10^3$                   |
|              |                        | UPMU          | _                    | _                    | _                     | _                                  |
|              |                        | Combined      | $2.09 \cdot 10^{3}$  | $4.28\cdot 10^3$     | $2.16\cdot 10^3$      | $4.20\cdot 10^3$                   |
| GW190425     | HE $E_{\rm iso}$       | Per-flavour   | $1.98 \cdot 10^{56}$ |                      | $1.96 \cdot 10^{56}$  | $3.69 \cdot 10^{56}$               |
| 011130120    |                        | $ u + ar{ u}$ | 2.62                 | $\cdot  10^{56}$     | 2.52                  | $\cdot 10^{56}$                    |
|              |                        | AII           | $3.47 \cdot 10^{56}$ |                      |                       |                                    |
|              | LE Φ                   | Flat          | $1.49 \cdot 10^{9}$  | $1.83 \cdot 10^{7}$  | $9.35 \cdot 10^{9}$   | $1.11\cdot 10^{10}$                |
|              |                        | Fermi-Dirac   | $3.92 \cdot 10^{9}$  | $9.57\cdot 10^7$     | $2.43\cdot10^{10}$    | $2.87\cdot 10^{10}$                |
|              | LE E <sub>iso</sub>    | Per-flavour   | $3.92 \cdot 10^{59}$ | $9.59 \cdot 10^{57}$ | $2.43 \cdot 10^{60}$  | $2.87 \cdot 10^{60}$               |
|              | All                    |               | $5.54 \cdot 10^{58}$ |                      |                       |                                    |

PRELIMINARY  $E^2 \frac{dn}{dF}$  [in GeV cm<sup>-2</sup>],  $\Phi$  [in cm<sup>-2</sup>],  $E_{iso}$  [in erg]

# Detailed results for GW190521 (BBH, $d = 4.53 \,\mathrm{Gpc}$ )

| Trigger name | Sample                 |               | $ u_{e}$             | $ar{ u}_{e}$         | $ u_{\mu} \ ( u_{x})$ | $ar{ u}_{\mu} \; (ar{ u}_{	imes})$ |
|--------------|------------------------|---------------|----------------------|----------------------|-----------------------|------------------------------------|
|              | HE $E^2 \frac{dn}{dE}$ | FC            | $2.27\cdot 10^3$     | $4.71\cdot 10^3$     | $3.76\cdot 10^3$      | $9.60\cdot 10^3$                   |
|              | uL.                    | PC            | $3.66 \cdot 10^4$    | $3.68 \cdot 10^{4}$  | $4.89\cdot 10^3$      | $8.35\cdot 10^3$                   |
|              |                        | UPMU          | _                    | _                    | $4.48\cdot 10^1$      | $5.04\cdot 10^1$                   |
|              |                        | Combined      | $2.21 \cdot 10^{3}$  | $4.60\cdot10^3$      | $3.75\cdot 10^1$      | $4.82\cdot 10^1$                   |
| GW190521     | HE $E_{ m iso}$        | Per-flavour   | $1.69 \cdot 10^{59}$ | $3.46 \cdot 10^{59}$ | $2.58 \cdot 10^{57}$  | $3.72 \cdot 10^{57}$               |
| 011130021    |                        | $ u + ar{ u}$ | 2.26                 | $\cdot 10^{59}$      | 3.00                  | · 10 <sup>57</sup>                 |
|              |                        | AII           | $8.94 \cdot 10^{57}$ |                      |                       |                                    |
|              | LE Φ                   | Flat          | $2.63 \cdot 10^9$    | $3.22 \cdot 10^{7}$  | $1.65\cdot 10^{10}$   | $1.95\cdot 10^{10}$                |
|              |                        | Fermi-Dirac   | $6.89 \cdot 10^9$    | $1.68\cdot10^8$      | $4.27\cdot10^{10}$    | $5.04\cdot10^{10}$                 |
|              | LE E <sub>iso</sub>    | Per-flavour   | $5.85 \cdot 10^{62}$ | $1.43 \cdot 10^{61}$ | $3.63 \cdot 10^{63}$  | $4.28 \cdot 10^{63}$               |
|              |                        | All           |                      | 8.26                 | · 10 <sup>61</sup>    |                                    |

PRELIMINARY  $E^2 \frac{dn}{dF}$  [in GeV cm<sup>-2</sup>],  $\Phi$  [in cm<sup>-2</sup>],  $E_{iso}$  [in erg]

## Stacking population analysis

We combine the likelihoods within a given population\*:

• Assuming same expected  $E_{iso}$  for all events:

$$\mathcal{L}^{\operatorname{Pop}}(E_{\operatorname{iso}}; \{\mathit{TS}_{\operatorname{data}})^{(i)}\}, \{\mathcal{V}_{\mathit{GW}}^{(i)}\}) = \prod_{i=1}^{N} \mathcal{L}(E_{\operatorname{iso}}; \mathit{TS}_{\operatorname{data}})^{(i)}, \mathcal{V}_{\mathit{GW}}^{(i)})$$

• Assuming neutrino emissions scales with object total mass  $\mathcal{M}_{\text{tot}}$ :

$$\mathcal{L}^{\operatorname{Pop}}(\mathit{f}_{\nu}; \{\mathit{TS}_{\operatorname{data}})^{(i)}\}, \{\mathcal{V}_{\mathit{GW}}^{(i)}\}, \{\mathcal{M}_{\operatorname{tot}}^{(i)}\}) = \prod_{i=1}^{N} \int \mathcal{M}_{\operatorname{tot}}^{(i)} \mathcal{L}(\mathit{f}_{\nu}\mathcal{M}_{\operatorname{tot}}^{(i)}; \mathit{TS}_{\operatorname{data}})^{(i)}, \mathcal{V}_{\mathit{GW}}^{(i)}) p_{\operatorname{GW}}(\mathcal{M}_{\operatorname{tot}}^{(i)}) \mathrm{d}\mathcal{M}_{\operatorname{tot}}^{(i)}$$

X





 $E_{
m iso}$ 

assuming same

<sup>\*</sup>Veske et al. JCAP 05 (2020) 016

| Experiment               | Super-Kamiokande                   | ANTARES                         | IceCube                            |  |
|--------------------------|------------------------------------|---------------------------------|------------------------------------|--|
| Energy range             | 0.1-10 <sup>5</sup> GeV            | TeV-PeV                         | 10-10 <sup>9.5</sup> GeV           |  |
| $E^2 dn/dE$ limits (min) | $4	imes10^1	ext{GeV}	ext{cm}^{-2}$ | $1\mathrm{GeV}\mathrm{cm}^{-2}$ | $0.03\mathrm{GeV}\mathrm{cm}^{-2}$ |  |
| $E^2 dn/dE$ limits (max) | $2	imes10^3	ext{GeV}	ext{cm}^{-2}$ | $9\mathrm{GeV}\mathrm{cm}^{-2}$ | $0.6\mathrm{GeV}\mathrm{cm}^{-2}$  |  |
| Reference                | this work                          | Poster $@CR\nu MM$              | PoS-ICRC2019-918                   |  |

This is assuming  $E^{-2}$ . The situation will be in favour of SK for  $\gamma > 2$  (e.g.  $E^{-3}$ ).