

Neutrino physics with the SHiP experiment

Alessandra Pastore (INFN Bari) on behalf of the SHiP Collaboration

Beyond Standard Model ...

Experimental hints of BSM physics

- $\boldsymbol{\nu}$ masses and oscillations
- Baryon Asymmetry of the Universe
- Dark Matter

and beyond Colliders

Search for Hidden Particles (SHiP) @ CERN-based Beam Dump Facility (BDF)

Access Bid. Bronker Bid. Bronker Bid. Bronker Bid. Access Bid. Bronker Bid. Bronker

existing tunnels existing buildings new installations

- Slow extraction (1 sec)
- High intensity proton beam 4*10¹³ p/spill , 4*10¹⁹ pot/year 2*10²⁰ pot/5 years - O(400 GeV/c) optimal beam momentu
- O(400 GeV/c) optimal beam momentum

The SHiP experiment

Dual detector system

- Scattering and Neutrino Detector (SND)
 - ightarrow neutrino physics and Light Dark Matter searches
- Hidden Sector detector (HS)

 \rightarrow search for new, weakly coupled, long lived particles from the Hidden Sector

The SHiP experiment : general requirements

driven by Hidden Sector phenomenology

The SHiP experiment : general requirements

driven by Hidden Sector phenomenology

The SHiP experiment : general requirements

driven by Hidden Sector phenomenology

The Scattering and Neutrino Detector

High (anti-) ν flux expected@BDF

→ Unique opportunity to perform studies on v_{τ} , v_{μ} , v_{e} (+ cc) @SHiP SND

v Physics potential at SND:

- first ever observation of anti- ν_τ
- ν_τ and anti- ν_τ physics with high statistics
- $\boldsymbol{\nu}$ induced charm production studies
- $\nu_{\rm f}$ cross sections measurements

# of v CC DIS int. in SND target in 2x10 ²⁰ pot				
	$ \bar{E}$ [GeV]	CC DIS int.		
ν_e	59	$1.1 imes10^{6}$		
ν_{μ}	42	$2.7 imes10^{6}$		
ν_{τ}	52	$3.2 imes10^4$		
$\bar{\nu}_e$	46	$2.6 imes10^5$		
$\bar{\nu}_{\mu}$	36	$6.0 imes10^5$		
$\bar{\nu}_{\tau}$	70	$2.1 imes 10^4$		

The Scattering and Neutrino Detector

Magnetized target

JINST 15 (2020) P01027

Magnetized volume of ~10 m³ (B \cong 1.2 T);

opening / closing mechanism to allow for emulsion film replacement during run

> RPC tracking planes hanging from top; upper trails for insertion / extraction sensitive area ~2×4 m² geometrical acceptance ~60%

Muon ID System

The Hidden Sector Detector

Decay Vessel

The Hidden Sector Detector

• Straw tracker ($\sigma_x < 120 \ \mu m \text{ per straw}$) inside the evacuated decay volume

• Timing detector (σ_t < 100 ps) plastic scintillators + SiPM or MRPCs

 ECAL (SpiltCal) sampling lead/scintillator + SiPM high-precision layers (MicroMegas)

 Muon system four active stations equipped with scintillating tiles + SiPM + iron or concrete

Prototyping SHiP

Small-scale replica of the SHiP target

Prototype of the SND muon ID system

Prototype of a complete cell of the SBT

Prototype of MRPC (HS timing detector)

Prototype of a scintillating fibre module of the SND target tracker

Prototype of the ECAL

Tau Neutrino physics with the SND

Looking for tau neutrino events, so far 9 ν_{τ} events by the DONUT experiment (no separation ν_{τ} - anti ν_{τ}) 10 events from ν_{μ} oscillation reported by the OPERA experiment

of expected observed ν_τ int.

Decay channel	$ u_{ au}$	$\overline{ u}_{ au}$
$\tau \to \mu$	1200	1000
au ightarrow h	4000	3000
$\tau \to 3h$	1000	700
total	6200	4700

in SHiP, the expected statistics $\times 10^3$ w.r.t. previous experiments will lead to:

- First observation of anti- u_{τ}
- Measurement of ν_{τ} and anti- ν_{τ} cross-sections

Tau Neutrino physics with the SND

in SHiP, the expected statistics x 10^3 w.r.t. previous experiments will also lead to the first evaluation of F_4 and F_5 not accessible with electron or muon neutrinos

$$\begin{split} \frac{d^2 \sigma^{\nu(\overline{\nu})}}{dx dy} &= \frac{G_F^2 M E_{\nu}}{\pi (1 + Q^2 / M_W^2)^2} \bigg((y^2 x + \frac{m_\tau^2 y}{2E_{\nu} M}) F_1 + \left[(1 - \frac{m_\tau^2}{4E_{\nu}^2}) - (1 + \frac{M x}{2E_{\nu}}) \right] F_2 \\ & \pm \left[xy (1 - \frac{y}{2}) - \frac{m_\tau^2 y}{4E_{\nu} M} \right] F_3 + \frac{m_\tau^2 (m_\tau^2 + Q^2)}{4E_{\nu}^2 M^2 x} F_4 - \frac{m_\tau^2}{E_{\nu} M} F_5 \bigg), \end{split}$$

Neutrino physics with the SND

Expec cł	ted CC narm p in 2x1	DIS v int. wit roduction .0 ²⁰ pot
	$\langle E \rangle$ [GeV]	CC DIS w. charm prod
$N_{\nu_{\mu}}$	55	1.3×10^{5}
N_{ν_e}	66	6.0×10^{4}
$N_{\overline{\nu}}$	49	2.5×10^{4}
Nu	57	1.3×10^{4}
Total		2.3×10^{5}

Expected anti- v_{μ} **induced charm yield in SHIP** ~ **2.5x10**⁴ Observed in CHORUS ~32, in NuTeV ~1400

 $\overline{\nu}\mbox{-induced}$ charm production sensitive to s-quark content of the nucleon

strange quark nucleon content through charm production

Significant reduction of the uncertainty on s-quark distribution with SHiP data, in the range 0.03 < x < 0.35 for s⁺(x)

16

Search for Heavy Neutral Leptons

T.Asaka, M.Shaposhnikov PLB 620 (2005) 17

HNL production

v Minimal Standard Model (*v* MSM):
 Extension of the SM by 3 right-handed
 Heavy Neutral Leptons (HNLs)

- Light N₁: Mass O(keV) Dark Matter candidate
- Heavy N₂,N₃: Mass O(GeV) Could explain v masses (through see-saw) and baryon asymmetry

Search for Heavy Neutral Leptons

T.Asaka, M.Shaposhnikov PLB 620 (2005) 17

HNL production

HNL decay

Conclusion

- The SHiP experiment has been proposed at CERN to search for new Physics at the intensity frontier
- SHiP offers a unique opportunity for neutrino physics, including Heavy Neutral Leptons search and ν_τ physics with unprecedented sensitivities
- The detector R&D and prototyping activities are on-going and in a good shape
- The Beam Dump Facility and SHiP Comprehensive Design Studies were already finalized, next step of the Collaboration being the TDR preparation

Light dark matter searches with the SND

Ideal laboratory also for Light Dark Matter scattering signatures

Look for LDM elastic scattering on atomic electrons of the target

$$\chi e^- \rightarrow \chi e^-$$

signal: single EM shower w/o associated tracks

background: neutrinos can mimic LDM scattering in case of only one visible track at primary vertex, *f.e.*

