The Future of Neutrino Telescopes: **Neutrino Sources and New Physics**

Ninggiang Song

with Shirley Li, Carlos Argüelles, Mauricio Bustamante, Aaron Vincent

Queen's University, McDonal Institute, Perimeter Institute Feb 22, 2021

XIX International Workshop on Neutrino Telescopes

High Energy Neutrinos

- Pion decay $(\nu_e : \nu_\mu : \nu_\tau) = (1 : 2 : 0)$ $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\mu^+ \rightarrow e^+ + \nu_{\mu} + \bar{\nu}_e$
- Muon-damped $(\nu_e : \nu_\mu : \nu_\tau) = (0 : 1 : 0)$

• Neutron decay $(\nu_e : \nu_\mu : \nu_\tau) = (1 : 0 : 0)$

XIX International Workshop on Neutrino Telescopes

 $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\mu^{\not} \to e^+ + \nu_{\mu} + \bar{\nu}_e$

 $n \rightarrow p + e^{-} + \bar{\nu}_{\rho}$

Neutrino Flavor at Earth

Neutrinos oscillate from source to Earth

$$P_{\alpha\beta}^{s \to \bigoplus} = \sum_{ij} U_{\beta i} U_{\beta j}^* U_{\alpha j} U_{\alpha i}^* \exp(-i\frac{\Delta m_{ij}^2 L}{2E})$$
$$= \sum_i |U_{\alpha i}|^2 |U_{\beta i}|^2$$

Showers/Cascades

• HESE data + through-going muons

Ningqiang Song (<u>ningqiang.song@queensu.ca</u>)

Data					
DOM					
DOM					
te the th					
†; T					
DOM					
DOM					
1					
inina ana ana ana ana ana ana ana ana an					
1					
+					
-					
DOM					
DOIVI					
. ++					
+ ++					

4

Future Neutrino Telescopes

Neutrino Flavor Measurements: Future

XIX International Workshop on Neutrino Telescopes

DUNE, Hyper-K

XIX International Workshop on Neutrino Telescopes

Flavor Composition at Earth

XIX International Workshop on Neutrino Telescopes

$$P_{\alpha\beta}^{s \to \bigoplus} = \sum_{i} |U_{\alpha i}|^{2} |U_{\beta i}|^{2}$$

ed: $(0:1:0)_{S}$
 $(1:0:0)_{S}$
 $f_{\beta,\bigoplus} = \sum_{\alpha=e,\mu,\tau} P_{\alpha\beta}^{s \to \bigoplus} f_{\alpha,S}$

NS, Li, Argüelles, Bustamante, Vincent, 2012.12893

Flavor Composition at Source

- Assume no ν_{τ} at source $f_{\tau,S} = 0$
- Combine the information from neutrino oscillation experiments and neutrino telescopes

$$\mathcal{P}(f_{e,S}) = \int d\boldsymbol{\theta} \mathcal{L}(\boldsymbol{\theta}) \mathcal{L}_{exp}(\boldsymbol{f}_{\oplus}(f_{e,S},\boldsymbol{\theta})) \pi(f_{e,S})$$

uniform prior

Flavor Composition at Source

- k_{π} : pion decay fraction (1:2:0)
- k_{μ} : muon-damped fraction (0 : 1 : 0)
- k_n : neutron decay faction (1:0:0)

$$\mathcal{P}(\boldsymbol{k}) = \int d\boldsymbol{\theta} \mathcal{L}(\boldsymbol{\theta}) \mathcal{L}_{\exp}(\boldsymbol{f}_{\oplus}(\boldsymbol{f}_{\mathrm{S}}(\boldsymbol{k}), \boldsymbol{\theta})) \pi(\boldsymbol{k})$$

NS, Li, Argüelles, Bustamante, Vincent, 2012.12893

Leptonic Non-unitarity

Assuming non-unitarity

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & \cdots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & \cdots \\ U_{\tau} & U_{\tau 2} & U_{\tau 3} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Oscillation probability

$$P_{\alpha\beta}^{\mathrm{NU}} = \frac{1}{N_{\alpha}N_{\beta}} \sum_{i=1}^{3} |U_{\alpha i}|^{2} |U_{\beta i}|^{2}$$
$$N_{\alpha} \equiv \sum_{i=1}^{3} |U_{\alpha i}|^{2}$$

XIX International Workshop on Neutrino Telescopes

Source determination is robust against non-unitarity

Non-unitary mixing -1.0 All regions 99.7% C.R. • π decay: $(1:2:0)_{S}$ 0.12020 \square *µ*-damped: $(0:1:0)_{S}$ -0.92040 \land *n* decay: $(1:0:0)_{S}$ 0.2 0.3 Krackion of white the second of white the second se Fraction of VH u-damped 0.5 π -de J th ⊗ 0.8 π -decay ----- 2020 (proj.): IC 8 yr (99.7% C.R.) 0.9 -- 2040 (proj.): IC 15 yr + Gen2 10 yr (99.7% C.R.) - 2040/(proj.): Combined ν telescopes (99.7% C.R.) 1.0 - 0.0 0.0 0.2 0.8 0.9 0.1 0.3 0.4 0.5 0.6 0.7 1.0 Fraction of ν_e , $f_{e,\oplus}$

Non-unitarity

Standard Oscillation

NS, Li, Argüelles, Bustamante, Vincent, 2012.12893

11

- Neutrino decay is model dependent and mass-ordering dependent
- With decay

$$f_{\beta,\oplus} = \sum_{i=1}^{3} |U_{\beta i}|^2 f_{i,\oplus}$$

NS, Li, Argüelles, Bustamante, Vincent, 2012.12893

Standard Oscillation

Neutrino Decay

NS, Li, Argüelles, Bustamante, Vincent, 2012.12893

- Assume ν_2 , ν_3 decay invisibly, ν_1 stable
- Assume pion decay at source $(f_e: f_\mu: f_\tau)_{\rm S} = (1/3, 2/3, 0)$
- Sum up neutrinos sources at different redshifts

$$D_{i} = \frac{N_{i}(E,0)}{N_{i}(E,z)} = Z(z)^{-\frac{m_{i}}{\tau_{i}}\frac{1}{H_{0}E}}$$

NS, Li, Argüelles, Bustamante, Vincent, 2012.12893

XIX International Workshop on Neutrino Telescopes

14

NS, Li, Argüelles, Bustamante, Vincent, 2012.12893

XIX International Workshop on Neutrino Telescopes

Summary

- DUNE, HK...
- events: IceCube-Gen2, P-ONE, KM3NeT, GVD, TAMBO...
- Constrain neutrino decay and neutrino lifetime
- black holes, long-lived particles

More precise neutrino mixing parameters at oscillation experiments: JUNO,

• Better flavor ratio measurement with significantly more high energy neutrino

• Pin down the production mechanism at source, robust against non-unitarity

• More new physics at future neutrino telescopes: leptoquarks, Z', microscopic

Backup Slides

XIX International Workshop on Neutrino Telescopes

XIX International Workshop on Neutrino Telescopes

Astrophysical Neutrino Flux

$$\frac{d\Phi_{6\nu}}{dE} = \Phi_{\text{astro}} \left(\frac{E_{\nu}}{100 \text{ TeV}}\right)^{-\gamma_{\text{astro}}} \cdot 10^{-18} \text{ GeV}^{-1} \text{ cm}^{-1}$$

 $\gamma_{astro} = 2.87^{+0.20}_{-0.19}$ HESE 7.5 years

XIX International Workshop on Neutrino Telescopes

IceCube Collaboration, 2011.03545

Where We Are

- Solar neutrinos + atmospheric neutrinos + reactor neutrinos + accelerator neutrinos
- $\sin^2 \theta_{12}$ and $\sin^2 \theta_{23}$ within 4%, $\sin^2 \theta_{13}$ within 3%
- $\delta_{\rm CP}$ and mass ordering less constrained

IceCube Collaboration, 2011.03561

XIX International Workshop on Neutrino Telescopes

NuFIT 5.0 (2020)

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 2.7)$	
without SK atmospheric data		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 heta_{12}$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$
	$ heta_{12}/^{\circ}$	$33.44_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$
	$\sin^2 heta_{23}$	$0.570\substack{+0.018 \\ -0.024}$	0.407 ightarrow 0.618	$0.575\substack{+0.017 \\ -0.021}$	$0.411 \rightarrow 0.621$
	$ heta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$
	$\sin^2 heta_{13}$	$0.02221\substack{+0.00068\\-0.00062}$	$0.02034 \to 0.02430$	$0.02240\substack{+0.00062\\-0.00062}$	$0.02053 \to 0.02436$
	$ heta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.61_{-0.12}^{+0.12}$	$8.24 \rightarrow 8.98$
	$\delta_{ m CP}/^{\circ}$	195^{+51}_{-25}	$107 \rightarrow 403$	286^{+27}_{-32}	$192 \rightarrow 360$
	$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.514^{+0.028}_{-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497^{+0.028}_{-0.028}$	$-2.583 \rightarrow -2.412$
with SK atmospheric data		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 7.1)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
	$\sin^2 heta_{12}$	$0.304\substack{+0.012\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$
	$ heta_{12}/^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45\substack{+0.78 \\ -0.75}$	$31.27 \rightarrow 35.87$
	$\sin^2 heta_{23}$	$0.573\substack{+0.016 \\ -0.020}$	$0.415 \rightarrow 0.616$	$0.575\substack{+0.016\\-0.019}$	$0.419 \rightarrow 0.617$
	$ heta_{23}/^{\circ}$	$49.2^{+0.9}_{-1.2}$	$40.1 \rightarrow 51.7$	$49.3^{+0.9}_{-1.1}$	$40.3 \rightarrow 51.8$
	$\sin^2 heta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	$0.02032 \to 0.02410$	$0.02238\substack{+0.00063\\-0.00062}$	$0.02052 \rightarrow 0.02428$
	$ heta_{13}/^{\circ}$	$8.57\substack{+0.12 \\ -0.12}$	$8.20 \rightarrow 8.93$	$8.60\substack{+0.12\\-0.12}$	$8.24 \rightarrow 8.96$
	$\delta_{ m CP}/^{\circ}$	197^{+27}_{-24}	$120 \rightarrow 369$	282^{+26}_{-30}	$193 \rightarrow 352$
	$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.517^{+0.026}_{-0.028}$	$+2.435 \rightarrow +2.598$	$-2.498^{+0.028}_{-0.028}$	$-2.581 \rightarrow -2.414$

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, 2007.14792

Ningqiang Song (<u>ningqiang.song@queensu.ca</u>)

NS, Li, Argüelles, Bustamante, Vincent, 2012.xxxxx

Flavor Composition at Source

- Neutron decay very subdominant
- Assume $k_n = 0$

$$\mathcal{P}(k_{\pi}) = \int d\boldsymbol{\theta} \mathcal{L}(\boldsymbol{\theta}) \mathcal{L}_{\exp}(\boldsymbol{f}_{\oplus}(\boldsymbol{f}_{\mathrm{S}}(k_{\pi}), \boldsymbol{\theta})) \pi(k_{\pi})$$

Pion decay determined within 20% by 2040

XIX International Workshop on Neutrino Telescopes

NS, Li, Argüelles, Bustamante, Vincent, 2012.12893

