

Istituto Nazionale di Fisica Nucleare





# Scintillating Li<sub>2</sub>MoO<sub>4</sub> Bolometers for neutrinoless double beta decay search

XIX International Workshop on Neutrino Telescopes Alberto Ressa, Sapienza - University of Rome on behalf of CUPID collaboration

### CUORE and CUPID





arXiv:2011.09295 [physics.ins-det]

#### CUORE:

Searching for  $^{130}\text{Te}~\textbf{Ov}\beta\beta$  decay with TeO  $_2$  bolometers at 10 mK

- First **ton-scale** bolometric experiment
- Reached **1 ton** × **year exposure**
- ~0.2% energy resolution at <sup>130</sup>Te Q-value (Q<sub>ββ</sub> ~ 2527 keV)
- <sup>130</sup>Te  $0\nu\beta\beta$ : limit on  $t_{1/2} > 10^{25} y$
- → Background level dominated by α particles from surface contamination: 10<sup>-2</sup> counts/(keV kg y) → 50 counts/y in the ROI

### CUORE and CUPID





#### CUPID:

Next generation experiment searching for  $^{100}$ Mo  $0\nu\beta\beta$  with **Scintillating Bolometers** using CUORE infrastructure:

- **Reject** α **particles** background with scintillation light detection
- <sup>100</sup>Mo isotope: higher Q<sub>ββ</sub> (3034 keV) to reduce natural radioactivity background in the ROI
- → "Background-free" condition
- →  $10^{27}$  y sensitivity on the <sup>100</sup>Mo  $0\nu\beta\beta$  half-life

R&D tests ongoing at LNGS to define the final CUPID design.



- 8 enriched Li<sub>2</sub>MoO<sub>4</sub> cubic crystals (LMO)
- 12 Light Detectors (LD) on top and bottom faces
- 4 crystals are covered with Reflecting Foil (RF)
- Heater: inject fixed energy purely thermal pulses

Light detected with small bolometers

Ge disk coated with SiO and equipped with thermistors

#### **Targets:**

- 1. Test Energy Resolution  $\rightarrow$  cubic Li<sub>2</sub>MoO<sub>4</sub> studied for the first time
- 2. Analyse Light Detectors Performances and Noise Level
- Study the Particle Identification capabilities and Light Collection

   → with/without RF to study the final CUPID configuration



### **Energy Resolution**

Energy spectrum: peaks from  $^{232}$ Th source FWHM ( $\Delta E$ ) vs Energy fitted using (p<sub>0</sub>+p<sub>1</sub>E)

Extrapolate **ΔE** at the <sup>100</sup>Mo Q-value (3034 keV)

⇒ (6.7 ± 0.6) keV⇒ 0.22%



Despite not optimal cryogenics conditions, the result **approaches the CUPID goal** of 5 keV FWHM

#### **Energy Resolution**

arXiv:2011.13656v1 [physics.ins-det]

Energy spectrum: peaks from  $^{232}$ Th source FWHM ( $\Delta E$ ) vs Energy fitted using (p<sub>0</sub>+p<sub>1</sub>E)

Extrapolate **ΔE** at the <sup>100</sup>Mo Q-value (3034 keV)

⇒ (6.7 ± 0.6) keV
 ⇒ 0.22%



Despite not optimal cryogenics conditions, the result **approaches the CUPID goal** of 5 keV FWHM

23/02/2021

**Targets:** 

1. Test Energy Resolution

 $\rightarrow$  cubic Li<sub>2</sub>MoO<sub>4</sub> studied for the first time

- 2. Analyse Light Detectors Performances and Noise Level
- Study the Particle Identification capabilities and Light Collection

   → with/without RF to study the final CUPID configuration



#### Light Detectors Performances

Light Detectors calibrated with X-rays hitting directly the Ge disk from <sup>55</sup>Fe sources



**Noise RMS** results in the range **25-40 eV** for each LD

**Reproducible result** which satisfy the request for CUPID

**Targets:** 

- 1. Test Energy Resolution
  - $\rightarrow$  cubic Li<sub>2</sub>MoO<sub>4</sub> studied for the first time
- 2. Analyse Light Detectors Performances and Noise Level
- Study the Particle Identification capabilities and Light Collection

   → with/without RF to study the final CUPID configuration



#### Particle Identification

Light Yield at a fixed Energy on heat channel is quenched for α particles Heat and Light simultaneous read-out allows Particle Identification



Reject  $\alpha$  from surfaces contamination: it is the dominant background at the  $\beta\beta$  Q-value in CUORE

**Discrimination Power:** 

$$DP \equiv \frac{\left|LY_{\beta/\gamma} - LY_{\alpha}\right|}{\sqrt{\sigma_{\beta/\gamma}^2 + \sigma_{\alpha}^2}}$$

#### **Particle Identification**

Light Yield at a fixed Energy on heat channel is quenched for α particles Heat and Light simultaneous read-out allows Particle Identification



Study of the **Light Yield** with/without Reflecting Foil (RF) using 2 LD:

Blue: crystals with RF → (1.10±0.05) keV/MeV Red: bare crystals → (0.50±0.05) keV/MeV

 $\rightarrow$  the RF increases the light collection by a factor > 2

#### Particle Identification

Study of  $\alpha$  particles events discrimination with **different configurations**: Signal acceptance: 99.7%  $\rightarrow$  cut at  $LY_{\beta/\gamma} - 3\sigma_{\beta/\gamma}$ 



- Complete Rejection (**DP** > 8) using 2 LDs & crystal with RF
- Good Results with
  - 1 LD & RF (**DP > 7**)
  - no RF but 2 LDs (**DP > 4**)



Inefficient with 1 LD and no RF (DP < 4)



### Summary

#### **Targets:**

- Energy Resolution of Li<sub>2</sub>MoO<sub>4</sub> cubic crystals:
   ⇒ (6.7 ± 0.6) keV FWHM: Close to CUPID goal
- Light Detectors Performances and Noise Level:
   ⇒ 25-40 eV RMS: reproducible results
- Particle Identification and Light Collection:
   ⇒ RF increases LY by a factor > 2
   ⇒ Complete α rejection with different light collection configurations



#### **Future Prospects**

New R&D run is ongoing at LNGS Hall C:

- Foreseen better experimental conditions. **Noise and cryogenics can be improved**. Operating the detector at 10 mK, instead of 20 mK, the energy resolution is expected to improve.
- Light collection will be improved using square, instead of circular, Light Detectors which will be also placed closer to the crystals

## **THANKS FOR YOUR ATTENTION!**