

#### **3D** segmented plastic scintillator neutrino detector for T2K experiment

Marat Khabibullin

[Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS)] for the T2K ND280 upgrade group

Joint Institute for

The work is supported by the JSPS-RFBR grant #20-52-50010

XIX International Workshop on Neutrino Telescopes

> 18-26 February 2021 Online





Nuclear Research











## T2K experiment



**T2K** is a long baseline accelerator neutrino experiment aiming to:

- Precise measurement of  $v_{\mu}$  and  $\overline{v}_{\mu}$ disappearance  $\rightarrow \theta_{23}$  and  $\Delta m_{32}^2$
- Observation of  $v_e$  and  $\overline{v}_e$  appearance  $\rightarrow$  determine  $\theta_{13}$  and  $\delta_{CP}$ .

T2K will run until 2026 with higher beam intensity, so to improve a sensitivity to  $\delta_{CP}$  we need to reduce systematic uncertainties

Neutrino source: J-PARC (Japan Proton Accelerator Research Complex) Neutrino detectors: near (ND280 and INGRID) and far (Super-Kamiokande, or SK)

## Near detector ND280 (current)





- **Current ND280** reduces the systematics in the predicted number of events at SK from 13-19% down to **5-14%** (for  $v_e/\overline{v}_e$  appearance)
- However, some sources of systematics remain:
  - non-isotropic detection of leptons in ND280 (in contrast to SK) [see next slide]
  - high threshold of proton detection [see next slide]
  - neutrino cross-section models

#### **ND280**: UA1 **Magnet** (0.2 T); **P0D**; 3 **TPC**s; 2 **FGD**s; **ECAL**; **SMRD**

**POD** =  $\pi^{0}$ -detector; **TPC** = Time Projection Chamber; **FGD** = Fine-Grained Detector; **ECAL** = E/m Calorimeter; **SMRD** = Side Muon Range Detector

## Near detector ND280 (current): systematics TZR



## ND280 Upgrade (2022)

![](_page_4_Picture_1.jpeg)

![](_page_4_Figure_2.jpeg)

![](_page_4_Figure_3.jpeg)

![](_page_4_Picture_4.jpeg)

In the Upgraded ND280 the **P0D** is replaced :

- by active 3D neutrino target (**Super-FGD**);
- two horizontal TPCs (HTPC) See Sergey Suvorov's talk on 25/Feb/2021
- six time-of-flight panels
  (TOF)

<u>Goal:</u> a) reduce systematics down to 3-4%; b)  $4\pi$ -acceptance for leptons from v-interactions; c) reduce proton detection threshold (to ~300 MeV/c); d) neutron detection (for  $\overline{\nu}$  detection).

## Super Fine-Grained Detector (SFGD)

![](_page_5_Picture_1.jpeg)

![](_page_5_Figure_2.jpeg)

- Active element: scintillator cube 1 cm<sup>3</sup> with 3 orthogonal holes for WLS fibers
- Full detector (baseline design):
  184 (Z) x 192 (X) x 56 (Y) = 1,978,368 cubes
- Weight (cubes): ~2,000 kg
- WLS Fibers (3 diff. lengths): 56,384 pcs
- Light Readout: 56,384 MPPCs
- Electronics: MPPC-PCBs and FEBs based on CITIROC
- **Calibration**: Light-Guide Plate (LGP) + LED
- Mechanical box: sandwich of CF and other materials

**WLS** = Wave-Length Shifting (fiber); **MPPC** = Multi-Pixel Photon Counter; **PCB** = Printed Circuit Board **CITIROC** = Cherenkov Imaging Telescope Integrated Read Out Chip; **FEB** = Front-End Board; **CF** = Carbon Fiber

### SuperFGD: cubes and readout

![](_page_6_Picture_1.jpeg)

![](_page_6_Picture_2.jpeg)

Active element: scintillator cube 1 cm<sup>3</sup> with 3 orthogonal holes for WLS fibers Cube material:

- polystyrene [C<sub>6</sub>H<sub>5</sub>CHCH<sub>2</sub>]<sub>n</sub>
- +1.5% of paratherphenyl (PTP)
- +0.01% of POPOP (1,4-bis benzene)
  Chemical reflector (etching): ~50 μm
  WLS fiber: Kuraray Y11, Ø1 mm, 2-clad
  MPPC: Hamamatsu S13360-1325PE

![](_page_6_Picture_8.jpeg)

![](_page_6_Figure_9.jpeg)

![](_page_6_Picture_10.jpeg)

![](_page_7_Picture_0.jpeg)

# Two sites of SuperFGD production in Russia \*)

![](_page_7_Picture_2.jpeg)

#### INR,

#### Troitsk, Moscow

- quality check
- layer assembly
- testing
- logistics
- financial support

\*) Part of the cubes were produced in collaboration with **Stony Brook University**, USA

![](_page_7_Figure_11.jpeg)

"Uniplast" factory, Vladimir city Cube production:

- injection molding
- etching
- hole drilling
- hole cleaning

![](_page_8_Picture_0.jpeg)

### Uniplast Co. (Vladimir city): Cube production <u>Tzk</u>

#### **Injection molding**

![](_page_8_Figure_3.jpeg)

![](_page_8_Picture_4.jpeg)

#### **Chemical reflector**

![](_page_8_Figure_6.jpeg)

![](_page_8_Picture_7.jpeg)

![](_page_8_Picture_8.jpeg)

#### Hole drilling

#### Hole cleaning

![](_page_8_Picture_11.jpeg)

![](_page_8_Picture_12.jpeg)

![](_page_9_Picture_0.jpeg)

#### First layers

![](_page_9_Picture_2.jpeg)

#### All (56) layers

![](_page_9_Picture_4.jpeg)

The cube layers are assembled with fishing lines (to be replaced by WLS fibers)

1 Layer = 184 x 192 cubes (baseline design)

22/Feb/2021

M. Khabibullin. 3D segmented detector. Neutrino Telescopes

![](_page_10_Picture_0.jpeg)

![](_page_10_Picture_1.jpeg)

## Status of the SuperFGD

- All 1-cm<sup>3</sup> cubes (~2 mln.) are produced and all layers are assembled with *fishing lines* (56 layers of 192 x 184 cubes)
- All other systems (mechanical box; read-out; electronics & cables; calibration; assembly platform) are in preparation
- Software and algorithms for reconstruction and DAQ are under development
- In order to check the performance of the SFGD several prototypes were produced and tested at CERN and LANL (see next slides)

## Prototypes of the SuperFGD for tests

![](_page_11_Picture_1.jpeg)

**5** × **5** × **5** (125) cubes

![](_page_11_Picture_3.jpeg)

![](_page_11_Picture_4.jpeg)

22/Feb/2021

X × Y × Z **24** × **8** × **48** (9216) cubes

![](_page_11_Picture_7.jpeg)

![](_page_11_Picture_8.jpeg)

 $X \times Y \times Z$   $8 \times 8 \times 32$ (2048) cubes

![](_page_11_Figure_10.jpeg)

![](_page_11_Picture_11.jpeg)

## Beam tests: charged particles @ CERN PS <u>tzk</u>

<u>2017-2018</u>: beam tests of the 5x5x5 and 24x8x48 prototypes at CERN PS/T9 with (0.4-8.0) GeV/c protons, muons (±), pions (±), electrons/positrons

Nucl.Instrum.Meth. A923 (2019) 134-138 Nucl.Instrum.Meth. A936 (2019) 136-138

JINST (2020) 15 P12003

![](_page_12_Figure_4.jpeg)

## Beam tests: charged particles @ CERN PS <u>Tzk</u>

JINST (2020) 15 P12003

#### Particle identification with dE/dx + range

![](_page_13_Figure_3.jpeg)

## Beam tests: charged particles @ CERN PS TZK

![](_page_14_Figure_1.jpeg)

22/Feb/2021

M. Khabibullin. 3D segmented detector. Neutrino Telescopes

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

## <u>Dec/2019 and Dec/2020</u>: beam tests of the 8x8x32 and 24x8x48 prototypes at LANL with neutrons (0 - 800 MeV). Analysis is ongoing

![](_page_15_Figure_3.jpeg)

# Expected efficiency of the ND280 Upgrade

![](_page_16_Figure_1.jpeg)

See Cesar Jesús-Valls'

talk on 24/Feb/2021

![](_page_17_Picture_0.jpeg)

## Summary

![](_page_17_Picture_2.jpeg)

- The ND280 Upgrade is necessary to reduce systematics of the T2K and improve its sensitivity to  $\delta_{\text{CP}}$
- The 3D active plastic neutrino scintillator detector SuperFGD is a part of the ND280 Upgrade in T2K
- More than 2 million scintillator cubes of 1-cm<sup>3</sup> are manufactured for SuperFGD
- All 56 layers (192 x 184 cubes) of the SuperFGD detector are assembled with *fishing lines*
- Charged-particle and neutron beam tests of the SuperFGD prototypes at CERN and LANL demonstrated a good performance of the SuperFGD

![](_page_18_Picture_0.jpeg)

![](_page_18_Picture_1.jpeg)

## Backup slides

![](_page_19_Picture_0.jpeg)

SuperFGD (with all components) is the result of activities of many groups and individual members of institutions from different countries, as well as JINR and CERN

![](_page_19_Picture_2.jpeg)

The work is supported by the JSPS-RFBR grant #20-52-50010