Photohadronic modelling of the 2010 gamma-ray flare from Markarian 421

Alberto Rosales de León, Anthony M. Brown & Paula M. Chadwick MNRAS, Volume 501, 2198 (2021) ArxiV: 2101.01743

XIX International Workshop on Neutrino Telescopes February, 2021

Motivations

Gamma-ray blazar samples and neutrino correlation studies:

TANAMI BLAZAR SAMPLE + HESE (Krauß et al. 2014 & 2015); FERMI-LAT (70 months 2FGL catalogue) + HESE (track events) (Brown et al. 2015); FERMI-LAT (2FHL VHE sources E>50 GeV & 3LAC catalogue E>100 MeV) + HESE (Padovaniet al. 2016); etc...

Possible neutrino sources associated with IceCube events:

TXS 0506+056 and IC-170922A (Aartsen et al. 2018); 3HSP J095507.9+355101 & IceCube200107A (Giommi et al. 2020); PKS B1424-418 (FSRQ) and HESE IC35 (Kadler et al. 2016).

Hadronic emission as a possible explanation of observed gamma-ray spectral hardening at TeV energies

1ES 1101-232 and H 2356-309 (Aharonian et al. 2006);

1ES 0229+200 (Tavecchio et al. 2009); W Comae, 3C 66A (Böttcher et al. 2013).

Past and ongoing SED modelling for flaring blazars, including orphan TeV flares

Markarian 501 Mücke & Protheroe (2001); 3C 279 Diltz & Böttcher (2016); TXS 0506+056 by numerous authors, etc...

A. Rosales de León

a case study: Markarian 421

Mrk 421: prominent blazar (BL Lac) RA=66.114°, Dec = 38.209°, z=0.031 near bright gamma-ray source (TeV), highly active, constant monitoring (MWL campaign 2010)

2010 Flaring activity: 14-days in March 2010 (MJD 55264–55277) remarkable flux variability at the VHE band (E > 100 GeV)

 $\frac{\mathrm{d}N_{v}}{\mathrm{d}E_{v}} = A_{v}E_{v}^{-2}$

 σ_{peak} ~500 µbarn, which is 5x10⁻²⁸cm², being this the dominant decay channel (~5x the direct channel)

A. Rosales de León

Photohadronic modelling of Mrk 421

XIX International Workshop on Neutrino Telescopes - Feb, 2021

TeV⊾

GeV

MeV

Log (v)

Akaike Information Criterion

Akaike (1974)

Is a test used to compare and select a model from a set of models. Seeks the preferred model based on:

AIC Difference $\Delta AIC_{p,q} = AIC_p - AIC_q$

> **py vs one-zone SSC** (Aleksić et al., 2015) **py vs two-zone SSC** (Aleksić et al., 2015)

As a rule of thumb: Any model comparison with an AIC difference >2 represents a substantial worse fitting for the highest value.

Δ_i	Level of Empirical Support of Model i			
0-2	Substantial	ى ئ		
4-7	Considerably less			
> 10	Essentially none.			
	-	Burnham and Anderson		

(2002).

MJD 55267

A. Rosales de León

Photohadronic modelling of Mrk 421

6

Results

Time MJD	A_{γ}	α	Preferred Model	$\Delta AIC_{SSC, p\gamma}$	$\Delta AIC_{two zone, SSC, p\gamma}$
55266	5.02 ± 2.74	3.12 ± 0.07	two-zone SSC	25.45	- 48.78
55267	27.24 ± 12.79	3.41 ± 0.09	PY	6.11	9.10
55274	0.19 ± 0.01	2.31 ± 0.03	inconclusive	2.54	0.73
55276	0.10 ± 0.02	2.17 ± 0.03	pγ	26.40	2.04
55277	0.18 ± 0.02	2.32 ± 0.03	Рγ	5.92	2.90

- In most of cases the py model was favoured as a better fit description, and always with a respect to the one-zone leptonic model from Aleksic et al. (2015)
- The high frequency of the seed photons considered lowers the energy threshold for the protons: $40 \text{ GeV} < E_p < 2.45 \text{ TeV}$ (comoving reference frame)
- Above TeV energies is where the models differ the most, this can be tested further with the upcoming CTA.
- Neutrinos Expected? For IC-59, during the 14 days we calculated an upper limit of Nevents < 0.14

Conclusions & Outlook

• Results show the potential of py contributions within a lepto-hadronic origin of VHE gamma-rays and neutrinos

Advantages: Proton energy required for pγ interactions Balance: goodness of the fit & simplicity **Caveats:** Extension to lower energies? Data in the MeV energy range would enable a better description

- A hadronic component could be dominant at VHE, followed by a dominant SSC leptonic component. If the proton injection occurs randomly, there is no preferred time for hadronic dominance during the flare.
- To explore the neutrino/gamma-ray connection in the upcoming years, the next generation of gamma-ray and neutrino observatories, such as CTA, SWGO, AMEGO, IceCube-Gen2, Trinity, will play a crucial role.
- Future gamma-ray observations above tens of TeV (CTA) and below 100 MeV in energy (AMEGO) will be crucial to test and discriminate between models.

THANKS FOR YOUR ATTENTION

XIX International Workshop on Neutrino Telescopes February, 2021