Search for light exotic fermions in double-beta decay

1) What

Introduction of a new fermion in the Standard Model, possibly related to mechanism of neutrino mass generation and/or dark matter of the Universe.
6. Sterile neutrino $\mathrm{N} / \mathrm{Z}_{2}$-odd fermion χ

- Mass and coupling strength to Standard Model particles are free parameters: they have to be constrained by laboratory experiments, or astrophysical and cosmological observations.

6. Weak laboratory constraints on N in the mass range between 100 keV and 100 MeV . No laboratory constraints on x.
2) How

- N and χ couple with neutrino \rightarrow production in double-beta decay
: $(A, Z) \rightarrow(A, Z+2)+2 e+2 \bar{\nu}$
? $(A, Z) \rightarrow(A, Z+2)+2 e+N+\bar{\nu}$
? $(A, Z) \rightarrow(A, Z+2)+2 e+2 \chi$
(2) The energy distribution of the emitted electrons can be accurately measured and used to probe which other particles have been emitted

3) Results

Frequentist analysis: binned maximum-likelihood fit based on a profilelikelihood test statistic. Systematic uncertainties included in the distribution of the test statistic.

- Sensitivity for a selection of current- and next-generation experiments given in terms of the median 90% C.L. upper limit on the coupling.

6 LEFT. Sensitivity of current double-beta decay experiments are weaker than existing limits, but larger exposure of future experiments encourages a dedicated search.

- RIGHT. Double-beta decay experiments offer a unique opportunity of probing models in which only the double production of light exotic fermions is allowed, and can lead to the first laboratory constraints.

