Phenomenology of the minimal inverse-seesaw with Abelian flavour symmetries

Filipe R. Joaquim

Departamento de Física and CFTP, Instituto Superior Técnico, Lisboa

Based on work in collaboration with Henrique Câmara & R.G. Felipe

arXiv:2012.04557 [hep-ph]

XIX Workshop on Neutrino Telescopes (18-26 February 2021)

Inverse-seesaw (ISS) mechanism

INVERSE SEESAW

$$\operatorname{ISS}(n_R, n_s)$$

Mohapatra; Mohapatra & Valle'86; Gonzalez-Garcia & Valle'89

$$(3 + n_R + n_s) \times (3 + n_R + n_s)$$
$$\mathcal{M} = \begin{pmatrix} 0 & \mathbf{M}_D^* & 0 \\ \mathbf{M}_D^\dagger & 0 & \mathbf{M}_R \\ 0 & \mathbf{M}_R^T & \mathbf{M}_s \end{pmatrix}$$

Sterile neutrino fields: ν_{Ri} $(i = 1, ..., n_R), s_i$ $(i = 1, ..., n_s)$

$$-\mathcal{L}_{\text{mass}}^{\text{ISS}} = \overline{e_L} \,\mathbf{M}_\ell \,e_R + \overline{\nu_L} \,\mathbf{M}_D \nu_R + \overline{\nu_R} \,\mathbf{M}_R s + \frac{1}{2} \overline{s^c} \,\mathbf{M}_s s + \text{H.c.}$$

Effective neutrino mass matrix $(m_D, \mu_s \ll M)$:

$$\mathbf{M}_{\text{eff}} = -\mathbf{M}_D^* (\mathbf{M}_R^T)^{-1} \mathbf{M}_s \mathbf{M}_R \mathbf{M}_D^{\dagger} \longrightarrow m_{\nu} \sim \mu_s \frac{m_D^2}{M^2}$$

Active-sterile mixing:

$$\mathbf{U}_{\mathrm{Hl}} \simeq \mathbf{V}_{L}^{\dagger} \left(0, \ \mathbf{M}_{D} (\mathbf{M}_{R}^{\dagger})^{-1} \right) \mathbf{U}_{s} \longrightarrow U_{\mathrm{Hl}} \sim \frac{m_{D}}{M} \sim \sqrt{\frac{m_{\nu}}{\mu_{s}}}$$

Type-I seesaw:
$$m_{
u} \sim \frac{m_D^2}{M} \;,\; U_{\rm Hl} \sim \frac{m_D}{M} \sim \sqrt{\frac{m_{
u}}{M}}$$

The ISS provides a natural template for (active) neutrino mass suppression with sizeable active-sterile mixing

0

Minimal Inverse Seesaw:

$$\operatorname{ISS}(n_R, n_s) \longrightarrow \operatorname{ISS}(2, 2)$$

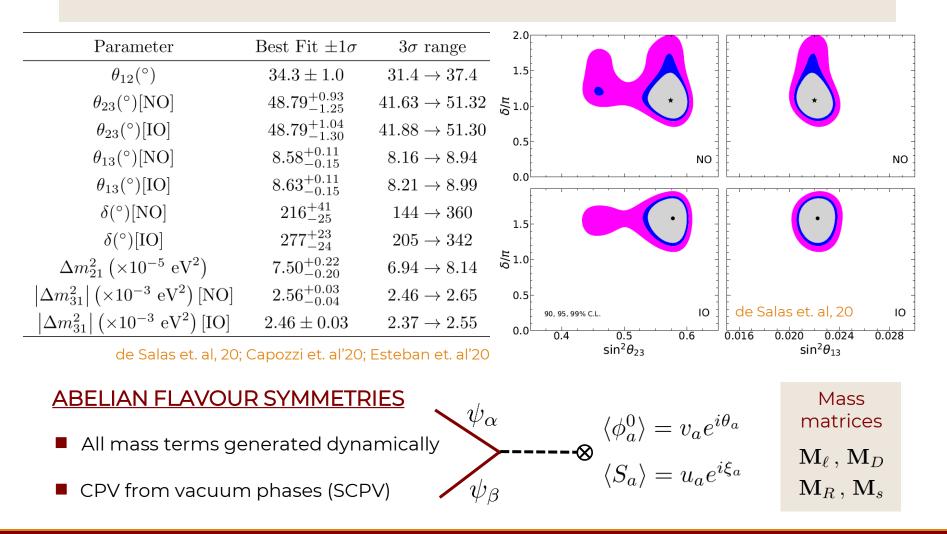
Abada & Lucente'14

- One massless neutrino
- Neutrino data can be accommodated
- Still 17 parameters (in the M_s diagonal basis)

Neutrino oscillation data

Minimal Inverse Seesaw ISS(2,2): 17 parameters vs 7 observables

 $\theta_{12} , \theta_{23} , \theta_{13} , \Delta m^2_{21,31} , \delta , \alpha$



Scalar content and Yukawa Lagrangian

- Need to add a second Higgs doublet to be able to realise the charged-lepton mass matrix textures.
- Add two neutral complex scalar singlets to dynamically generate \mathbf{M}_s and \mathbf{M}_R .

$$\Phi_{1,2} = \begin{pmatrix} \phi_{1,2}^+ \\ \phi_{1,2}^0 \\ \phi_{1,2}^0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}\phi_{1,2}^+ \\ v_{1,2}e^{i\theta_{1,2}} + \rho_{1,2} + i\eta_{1,2} \end{pmatrix} , \qquad S_{1,2} = \frac{1}{\sqrt{2}} \left(u_{1,2}e^{i\xi_{1,2}} + \rho_{3,4} + i\eta_{3,4} \right)$$

$$-\mathcal{L}_{\text{Yuk.}} = \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_D^1 \tilde{\Phi}_1 + \mathbf{Y}_D^2 \tilde{\Phi}_2 \right) \nu_R$$
$$+ \frac{1}{2} \overline{s^c} \left(\mathbf{Y}_s^1 S_1 + \mathbf{Y}_s^2 S_1^* \right) s + \overline{\nu_R} \left(\mathbf{Y}_R^1 S_2 + \mathbf{Y}_R^2 S_2^* \right) s + \text{H.c.}$$

 $\frac{\text{SCALAR POTENTIAL}}{V(\Phi_a, S_a) = V_{\text{sym.}} + V_{\text{soft}}(\Phi_a, S_a)} = V_{\text{soft}}(\Phi_a, S_a) = \mu_{12}^2 \Phi_1^{\dagger} \Phi_2 + \mu_3^2 S_1^2 + \mu_4 |S_1|^2 S_1 + \mu_5 |S_2|^2 S_2 + \text{H.c.}$

SCPV IS ACHIEVED WITH: $\theta, \xi_2 = 0, \xi_1 = \arctan\left(\frac{\sqrt{32\mu_3^4 - \mu_4^2 u_1^2}}{\mu_4 u_1}\right)$

Abelian flavour symmetries

 Maximally-restrictive sets compatible with neutrino oscillation data that are realizable by Abelian symmetries:

		$(5_{1,I}^{\ell}, T_{45})$	$(4_3^\ell, T_{124})$	$(4_3^\ell, T_{456})$	$(4_3^\ell, T_{136,I})$	$(4_3^\ell, T_{146,I})$
Fields	U(1)	$\mathbb{Z}_2 \times \mathrm{U}(1)_\mathrm{F}$	$\mathbb{Z}_2 \times \mathrm{U}(1)_\mathrm{F}$	$\mathbb{Z}_2 \times \mathrm{U}(1)_\mathrm{F}$	$\mathbb{Z}_4 \times \mathrm{U}(1)_\mathrm{F}$	$\mathbb{Z}_4 \times \mathrm{U}(1)_\mathrm{F}$
Φ_1	0	(1,1)	(0, -5)	(1,1)	(1,2)	(0,1)
Φ_2	0	(0, -1)	(1, -3)	(0, -1)	(0,1)	(3,0)
S_1	0	(0,2)	(0, -2)	(0, -2)	(0, -2)	(0, -2)
S_2	1	(0, 0)	(0, 0)	(1, 0)	(0,0)	(0, 0)
ℓ_{e_L}	1	(1,0)	(0,0)	(0,0)	(2, 0)	(2, 0)
ℓ_{μ_L}	1	(0,2)	(1, 2)	(1, -2)	(1,-1)	(1, -1)
$\ell_{ au_L}$	1	(0, -2)	(0,4)	(0, -4)	(0, -2)	(0, -2)
e_R	1	(1, -3)	(0,9)	(1, -5)	(3, -4)	(0, -3)
μ_R	1	(0,3)	(1,7)	(0,-3)	(0, -3)	(1, -2)
$ au_R$	1	(0, -1)	(0,5)	(1,-1)	(1, -2)	(2, -1)
$ u_{R_1}$	1	(0,1)	(0, -1)	(0,-1)	(0,-1)	(0, -1)
$ u_{R_2}$	1	(1, -1)	(1,1)	(1,1)	(2,1)	(2,1)
s_1	0	(1, -1)	(1,1)	(0,1)	(2,1)	(2,1)
s_2	0	(0,1)	(0, -1)	(1, -1)	(0, -1)	(0, -1)

 $\mathbf{G}_{\mathrm{F}} = \mathrm{U}(1) \times \mathbb{Z}_n \times \mathrm{U}(1)_{\mathrm{F}}, \ n = 2, 4$

Abelian flavour symmetries

INTERESTING CASE				
		$(5_{1,I}^{\ell}, T_{45})$		
Fields	U(1)	$\mathbb{Z}_2 \times \mathrm{U}(1)_\mathrm{F}$		
Φ_1	0	(1,1)		
Φ_2	0	(0, -1)		
S_1	0	(0,2)		
S_2	1	(0,0)		
ℓ_{e_L}	1	(1,0)		
ℓ_{μ_L}	1	(0,2)		
$\ell_{ au_L}$	1	(0, -2)		
e_R	1	(1, -3)		
μ_R	1	(0,3)		
$ au_R$	1	(0, -1)		
$ u_{R_1}$	1	(0,1)		
$ u_{R_2}$	1	(1, -1)		
s_1	0	(1, -1)		
s_2	0	(0,1)		

ONLY

$-\mathcal{L}_{\text{Yuk.}} = \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2 \Phi_2 \right) e_R + \overline{\ell_L} \left(\mathbf{Y}_{\ell}^1 \Phi_1 + \mathbf{Y}_{\ell}^2$	$\left(\mathbf{Y}_D^1 ilde{\Phi}_1 + \mathbf{Y}_D^2 ilde{\Phi}_2 ight) u_R$
$+\frac{1}{2}\overline{s^c}\left(\mathbf{Y}_s^1S_1 + \mathbf{Y}_s^2S_1^*\right)s + \overline{\nu_R}\left(\mathbf{Y}_s^1S_1 + \mathbf{Y}$	$\mathbf{Y}_{R}^{1}S_{2} + \mathbf{Y}_{R}^{2}S_{2}^{*}$) s + H.c.

Mass matrices Yukawa decompositions

\mathbf{M}_ℓ	\mathbf{Y}^1_ℓ	\mathbf{Y}_ℓ^2	\mathbf{M}_R \mathbf{Y}_R
$5^\ell_{1,\mathrm{I}}$	$\begin{pmatrix} 0 & 0 & \times \\ 0 & 0 & 0 \\ \times & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$	$\mathbf{T}_{14} \begin{pmatrix} 0 & \times \\ \times & 0 \end{pmatrix}$
\mathbf{M}_D	\mathbf{Y}_D^1	\mathbf{Y}_D^2	\mathbf{M}_s \mathbf{Y}_s^1 \mathbf{Y}_s^2
T_{45}	$\begin{pmatrix} \times & 0 \\ 0 & 0 \\ 0 & \times \end{pmatrix}$	$\begin{pmatrix} 0 & \times \\ \times & 0 \\ 0 & 0 \end{pmatrix}$	$\mathbf{T}_{23} \begin{pmatrix} \times & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & \times \end{pmatrix}$

A common origin for Leptonic CPV

Parameterisation of the charged lepton-mass matrix:

$$5_1^{\ell}: \quad \mathbf{M}_{\ell} = \begin{pmatrix} 0 & 0 & a_1 \\ 0 & m_{\ell_1}^2 & 0 \\ a_2 & 0 & a_4 \end{pmatrix} , \quad \mathbf{H}_{\ell} = \begin{pmatrix} a_1^2 & 0 & a_1 a_4 \\ 0 & a_3^2 & 0 \\ a_1 a_4 & 0 & a_2^2 + a_4^2 \end{pmatrix} , \quad \mathbf{V}_L' = \begin{pmatrix} c_L & 0 & s_L \\ 0 & 1 & 0 \\ -s_L & 0 & c_L \end{pmatrix} \quad \theta_L$$

 $5_1^e: \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{12}, \quad 5_1^\mu: \mathbf{V}_{L,R} = \mathbf{V}'_{L,R}, \quad 5_1^\tau: \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{23},$

 $NO_{e,\mu,\tau}$, $IO_{e,\mu,\tau}$ \longrightarrow 6 distinct cases to be analysed

REAL YUKAWAS (CP is conserved @ the Lagrangian level)

$$\mathbf{Y}_D^1 = \begin{pmatrix} b_1 & 0\\ 0 & 0\\ 0 & b_2 \end{pmatrix}, \ \mathbf{Y}_D^2 = \begin{pmatrix} 0 & b_3\\ b_4 & 0\\ 0 & 0 \end{pmatrix}, \ \mathbf{Y}_R = \begin{pmatrix} 0 & d_2\\ d_1 & 0 \end{pmatrix}, \ \mathbf{Y}_s^1 = \begin{pmatrix} f_2 & 0\\ 0 & 0 \end{pmatrix}, \ \mathbf{Y}_s^2 = \begin{pmatrix} 0 & 0\\ 0 & f_1 \end{pmatrix}$$

VEV configuration:

Correlation between low-energy observables

EFFECTIVE NEUTRINO MASS MATRIX: $\mathbf{V}_L^\dagger \mathbf{M}_{ ext{eff}} \mathbf{V}_L$

$$\mathbf{M}_{\text{eff}} = e^{-i\xi} \begin{pmatrix} \frac{y^2}{x} + \frac{z^2}{w} e^{2i\xi} & y & ze^{2i\xi} \\ y & x & 0 \\ ze^{2i\xi} & 0 & we^{2i\xi} \end{pmatrix}, \mathbf{V}_L = \begin{pmatrix} \cos\theta_L & 0 & \sin\theta_L \\ 0 & 1 & 0 \\ -\sin\theta_L & 0 & \cos\theta_L \end{pmatrix} \qquad \begin{bmatrix} 5_1^e : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{12} \\ 5_1^\mu : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \\ 5_1^\mu : \mathbf{V}_{L,R} = \mathbf{V}'_{L,R} \mathbf{P}_{23} \end{bmatrix}$$

$$z = \mu_s \frac{m_{D_2} m_{D_3}}{M^2} \frac{p}{q^2} , \ w = \mu_s \frac{m_{D_2}^2}{M^2} \frac{p}{q^2} , \quad x = \mu_s \frac{m_{D_4}^2}{M^2} , \ y = \mu_s \frac{m_{D_1} m_{D_4}}{M^2}$$

The effective light neutrino mass matrix is written solely in terms of 6 effective parameters:

$$(x, y, z, w, \theta_L, \xi) \longrightarrow \mathcal{O}_i \equiv (\Delta m_{21}^2, \Delta m_{31}^2, \theta_{ij}, \delta, \alpha)$$

$$\text{NO}: M_{ij} = \left[\mathbf{U}'^* \text{diag} \left(0, \sqrt{\Delta m_{21}^2}, \sqrt{\Delta m_{31}^2} \right) \mathbf{U}'^\dagger \right]_{ij}$$

$$\text{IO}: M_{ij} = \left[\mathbf{U}'^* \text{diag} \left(\sqrt{\Delta m_{31}^2}, \sqrt{\Delta m_{21}^2 + \Delta m_{31}^2}, 0 \right) \mathbf{U}'^\dagger \right]_{ij}$$

$$\text{D}_{ij} = M_{ii} M_{jj} - M_{ij}^2$$

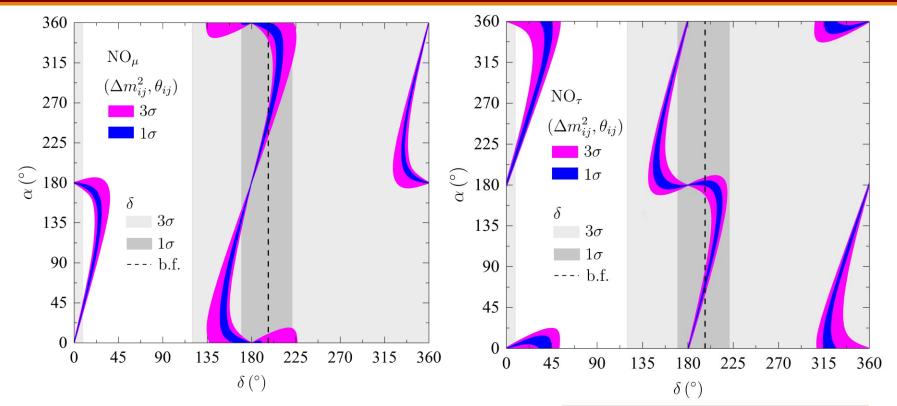
$$\text{Low-energy relations: - 5^e_1 : arg \left[M_{11}^{*2} M_{13}^2 \frac{D_{12}}{D_{23}} \right] = 0$$

$$5^{\mu}_1 : arg \left[M_{12}^{*2} M_{23}^2 \frac{D_{12}}{D_{23}} \right] = 0$$

$$5^{\pi}_1 : arg \left[M_{12}^{*2} M_{23}^2 \frac{D_{12}}{D_{23}} \right] = 0$$

$$5^{\pi}_1 : arg \left[M_{13}^{*2} M_{33}^2 \frac{D_{12}}{D_{23}} \right] = 0$$

Leptonic CP violation



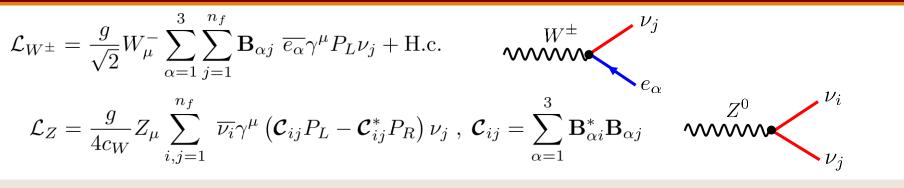
• Strong correlation between α and δ

- Approximate symmetry $\delta \rightarrow \delta + \pi$
- No Dirac CPV implies no Majorana CPV

 $\langle S_1
angle = u_1 e^{i\xi}$ $\mathcal{J}_{\mathrm{Dirac}}^{\mathrm{CP}}, \ \mathcal{J}_{\mathrm{Maj}}^{\mathrm{CP}} \propto \sin(2\xi)$ as in Branco, Felipe, FRJ, Serôdio (2012)

• A measurement of δ in the intervals [45°, 135°] and [225°, 315°] would exclude the NO_u and NO_{τ} cases

Heavy-light mixing relations



$$\frac{\mathbf{B}_{e4}}{\mathbf{B}_{\mu4}} \simeq \frac{\mathbf{B}_{e5}}{\mathbf{B}_{\mu5}} \simeq \frac{x}{yc_L} , \ \frac{\mathbf{B}_{\tau4}}{\mathbf{B}_{\mu4}} \simeq \frac{\mathbf{B}_{\tau5}}{\mathbf{B}_{\mu5}} \simeq \tan\theta_L , \ \frac{\mathbf{B}_{\mu6}}{\mathbf{B}_{\tau6}} \simeq \frac{\mathbf{B}_{\mu7}}{\mathbf{B}_{\tau7}} \simeq \frac{z - w \tan\theta_L}{w + z \tan\theta_L} , \ \mathbf{B}_{e6} \simeq \mathbf{B}_{e7} \simeq 0$$

NUMERICAL ESTIMATES

	NO_{e}	NO_{μ}	NO_{τ}	IO_e	IO_{μ}	IO_{τ}
$\mathbf{B}_{e4}/\mathbf{B}_{\mu4}\simeq\mathbf{B}_{e5}/\mathbf{B}_{\mu5}$	0.21	0.17	0.17	2.73	0.21	0.41
$\mathbf{B}_{ au 4}/\mathbf{B}_{\mu 4} \simeq \mathbf{B}_{ au 5}/\mathbf{B}_{\mu 5}$	0.27	0.88	0.87	0.51	1.09	1.24
$\mathbf{B}_{ au 4}/\mathbf{B}_{e4}\simeq \mathbf{B}_{ au 5}/\mathbf{B}_{e5}$	1.27	5.07	5.24	0.19	5.33	5.02
$\mathbf{B}_{e6}/\mathbf{B}_{\mu 6}\simeq \mathbf{B}_{e7}/\mathbf{B}_{\mu 7}$	0	_	0.36	0	_	4.96
$\mathbf{B}_{ au 6}/\mathbf{B}_{\mu 6}\simeq \mathbf{B}_{ au 7}/\mathbf{B}_{\mu 7}$	0.61	_	0	1.14	_	0
$\mathbf{B}_{ au 6} / \mathbf{B}_{e6} \simeq \mathbf{B}_{ au 7} / \mathbf{B}_{e7}$	_	1.64	0	_	0.23	0

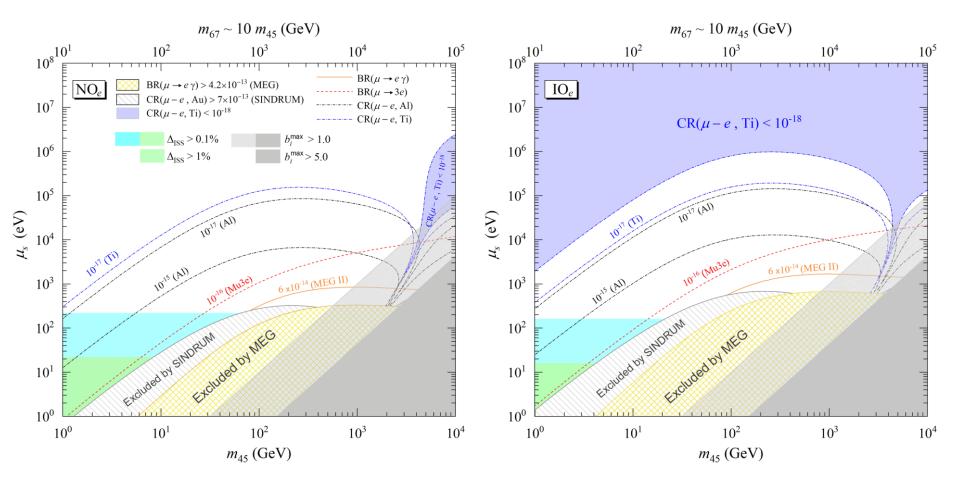
- The $B_{\alpha i}$ ($\alpha = e, \mu, \tau$) (i = 4, ..., 7) are related to each other,
- The relations are expressed solely in terms of the low-energy neutrino observables,
- Due to the flavour symmetries the heavy-light mixing parameters are not independent,

This establishes relations among cLFV processes (no time to discuss here)

Charged lepton flavour violation (cLFV)

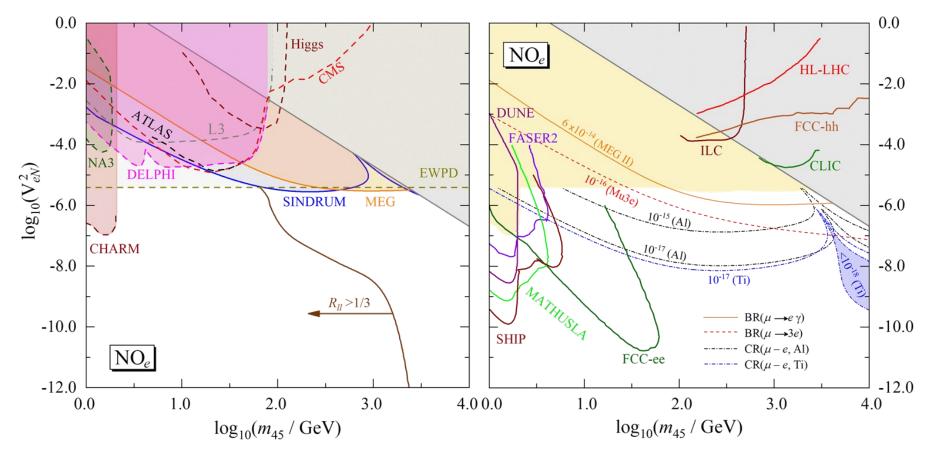
cLFV process	Present limit $(90\% \text{ CL})$	Future sensitivity
$BR(\mu \to e\gamma)$	$4.2 \times 10^{-13} \text{ (MEG)}$	6×10^{-14} (MEG II)
$BR(\tau \to e\gamma)$	$3.3 \times 10^{-8} $ (BaBar)	3×10^{-9} (Belle II)
${ m BR}(au o \mu \gamma)$	4.4×10^{-8} (BaBar)	10^{-9} (Belle II)
$BR(\mu^- \to e^- e^+ e^-)$	1.0×10^{-12} (SINDRUM)	10^{-16} (Mu3e)
$BR(\tau^- \to e^- e^+ e^-)$	2.7×10^{-8} (Belle)	5×10^{-10} (Belle II)
${\rm BR}(\tau^- \to e^- \mu^+ \mu^-)$	2.7×10^{-8} (Belle)	5×10^{-10} (Belle II)
${\rm BR}(\tau^- \to e^+ \mu^- \mu^-)$	1.7×10^{-8} (Belle)	3×10^{-10} (Belle II)
$\mathrm{BR}(\tau^- \to \mu^- e^+ e^-)$	1.8×10^{-8} (Belle)	3×10^{-10} (Belle II)
$\mathrm{BR}(\tau^- \to \mu^+ e^- e^-)$	1.5×10^{-8} (Belle)	3×10^{-10} (Belle II)
$BR(\tau^- \to \mu^- \mu^+ \mu^-)$	2.1×10^{-8} (Belle)	4×10^{-10} (Belle II)
$CR(\mu - e, Al)$	_	$3 \times 10^{-17} $ (Mu2e)
		$10^{-15} - 10^{-17}$ (COMET I-II)
$CR(\mu - e, Ti)$	4.3×10^{-12} (SINDRUM II)	10^{-18} (PRISM/PRIME)
$CR(\mu - e, Au)$	7×10^{-13} (SINDRUM II)	_
$CR(\mu - e, Pb)$	4.6×10^{-11} (SINDRUM II)	_

cLFV in the ISS(2,2) with Abelian symmetries



- (Almost) the whole parameter space will be scrutinized by future μ–e conversion experiments (Mu2e, COMET, PRISM/PRIME) for normal neutrino mass ordering;
- For inverted ordering the prospects are less optimistic.

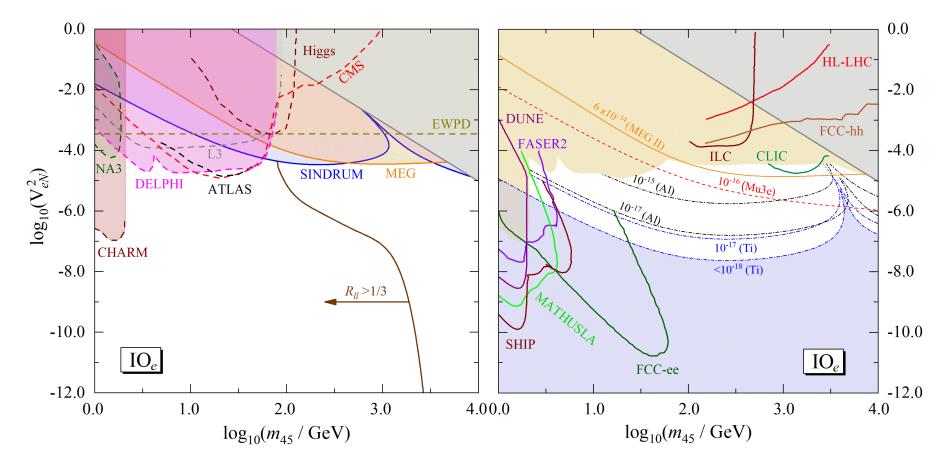
Constraints on heavy sterile neutrinos



Current data implies an upper bound $V_{eN}^2 \sim 10^{-6} - 10^{-5}$;

Future probes will be sensitive to much smaller mixings. LFV complementary to other searches.

Constraints on heavy sterile neutrinos



- EWPD is less constraining in the IO case;
- Future CLV probes will be sensitive to $V_{eN}^2 \sim 10^{-7}$

- Minimal inverse seesaw mechanism constrained by Abelian flavour symmetries with all mass terms generated via SSB;
- Majorana and Dirac-type CP violation are related;
- Relations among LFV parameters in our framework provide a very constrained setup for phenomenological studies;
- Constraining power of cLFV processes in the model's parameter space;
- Alternative probes such as beam-dump, hadron-collider, linearcollider, displaced-vertex experiments as well as EWPD.

Impact of radiative correction on neutrino masses, neutrinoless double beta decay, relations among tau and mu decays,...

Grazie!

Acknowledgements: This work has been supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the projects UIDB/00777/2020, UIDP/00777/2020, CERN/FIS-PAR/0004/2019, and PTDC/FIS-PAR/29436/2017.