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Muon beams for particle physics

= Muons, elementary leptons ~200 times heavier than electrons,
make excellent collider candidates

= Avoids large QCD background from hadron collisions

= Collisions utilise full CM energy, unlike parton-parton collisions
in hadron colliders

= Synchrotron radiation is highly supressed due to mass
= Also suppresses beamstrahlung, reduces beam degradation
= Larger coupling to Higgs mechanism through larger m,

= Muon beams provide high quality neutrino source - nuSTORM and
the Neutrino Factory

= Well-defined spectrum and neutrino flux, u™ — e*v,v,

= Large v, event rate, orders of magnitude > T2K, Minerva

=  Anomalous magnetic moment (g-2), Lepton Flavour Violation
searches, test of SM
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L. Delahaye et al, arXiv:1901.06150 - )
500 Y Energy at which

cross-section is equal

Assuming equal
Feynman amplitude

Assuming factor 10
enhancement in pp

sy [TeV]

= 14 TeV Muon Collider (LHC CM energy) comparable to 100 TeV proton-
proton collider like FCC-HH
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Muon Collider and Neutrino Factory
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= Muon beams are unstable (muon lifetime only ~2.2 us at rest)
= Tertiary beam production (p » T - u) — large beam emittance

= Rapid cooling required — ionization cooling only technique fast enough!
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R&D Programme

= MERIT
= Demonstrated principle of liquid Mercury
jet target
= MuCool Test Area

= Demonstrated operation of RF cavities in
strong B-fields

= EMMA

= Showed rapid acceleration in non-scaling
FFA

= MICE
= Demonstrate ionization cooling principle

= Increase inherent beam brightness —
number of particles in the beam core

= “Amplitude”
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Ionization Cooling Principle

®

dE/dx multiple scattering |
B B

s

» Energy loss in absorbers reduces both p, and p;
> Multiple scattering heats beam
> RF cavities restore along p, only

> Net reduction of p;, beam emittance (cooling)
» strong focussing and low-Z absorber material mitigate scattering effect
~ High RF gradient required
: _ de; 1
> Cooling Equation. — ~ —

ds B?

ddi: is rate of change of transverse emittance within the absorber; 8, E, and m, the muon velocity, energy, and mass,
respectively; B, is the lattice betatron function at the absorber; X, is the radiation length of the absorber material.

e, . [L(13.6 MeV)?

dEu
dz
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Muon Ionization Cooling Experiment

= Over 100 collaborators, 10
countries, 30 institutions

= Operated at Rutherford Appleton
Laboratory between 2008 and 2017

MICE aimed to:

= Demonstrate high acceptance, tight focussing solenoid lattice

= Demonstrate integration of liquid hydrogen and lithium hydride absorbers
= Validate details of material physics models

= Demonstrate ionization cooling principle and amplitude non-conservation
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MICE Muon Beam line
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MICE Muon Beam (MMB)

=  Muon momenta between 120 and 260 MeV/c
=  Muon emittance between 2 mm and 10 mm
= Pion impurity suppressed at up to 99 % level

»  The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon lonization Cooling Experiment,
JINST 7, P05009 (2012)

m  Characterisation of the muon beams for the Muon lonisation Cooling Experiment, EPJ C 73, 10 (2013)
= Pion contamination in the MICE muon beam, JINST 11 (2016)
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Cooling Channel Lattice

Upstream Spectrometer Solenoid Focus Coil Downstream Spectrometer Solenoid
TOFO TOF1 TOF2
Ckov Ckov = = — / | @ = = B =
A B
0 1m I KL
MICE —————| Diffuser Upstream Tracker LH, Absorber Downstream Tracker EMR
E : :—- L : _: : L} L} 1 L} n n . %x=0.16 m
N 2 I ' 1 [ T g - <
m — ] 1 ] [ I | L3N] ' ] 1 ¥ ¥ m— x=0.0 M
— " 1 [ A [ [ ] ]
= ' [ oo A o [ 1 ® Hall Probe Readings
— [ ] 1 | ] * ----- ] [ ] ] [ ] | ]
— ] [ ] [ “ '0 -~ . "] ] " ¥ MICE
2 : ' LI LERT P =" "~_.:.-:..-:--.-:--.:-- 2017/02-6, 2017/02-7
— L 111 i L " I | M | I | L Al

= Spectrometer solenoids upstream and downstream provide uniform 2-4 T field for
SciFi trackers / detector systems

= Focus coil module provides tight focussing on absorber

= Can flip field polarity across absorber, prevents canonical angular momentum
buildup
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Absorbers

= 65 mm thick lithium hydride absorber

= 350 mm thick liquid hydrogen absorber

= Contained in two pairs of 150-180 micron thick Al
windows

= 45° polythene wedge absorber for longitudinal
emittance studies

LiH Wedge

1

LH, vessel
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Scintillating Fibre trackers

Tracks form a helix in spectrometer solenoids
Position of particles measured by 5 stations of scintillating fibres
Reconstruct helix in two phases

= Pattern recognition to reject noise
= Kalman filter to get optimal trajectory
Yields momentum and position of particles at reference plane

A scintillating fibre tracker for MICE, NIM A 659, 2011
The reconstruction software for the MICE scintillating fibre trackers, J.Inst.11, 2016
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Time-of-Flight, Ckov and Calorimetry

= High precision Time-of-Flight detectors
= Comparison of time-of-Flight with momentum enables
rejection of impurities

= Threshold Cherenkov detectors provide rejection of
impurities near the relativistic limit

= KLOE Light and Electron Muon Ranger provide
calorimetry and rejection of decay electrons in
downstream region

m  Electron-Muon Ranger (EMR)
Performance in the MICE Muon

Reconstructed Data Reconstructed Monte Carlo
Beam, JINST 10 P12012 (2015)  _ T
. L. 2 i MICE ) @ [ MICE
= The design and commissioning of & Run 7469, MAUS v3.2 E ar Run 7469, MAUS v3.2
the MICE upstream time-of- = | €
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Material physics processes
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= Energy loss and multiple Coulomb scattering underlie ionization
cooling emittance decrease

= Precision measurement of multiple coulomb scattering
= Validation of energy loss model
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Measurement of Beam Properties

£
= MICE individually measures g |
every particle 2 N g )
= Accumulate particles into a z | Sl S,
beam ensemble £« dliime. | g

= Can measure beam properties =

~100F T 3 - AR

with unprecedented precision g = P TR
= E.g. coupling of x-y from 2 AN T | TR |

ISIS Cycle 2017/03
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First particle-by-particle measurement of emittance in the Muon lonization Cooling Experiment,
Eur. Phys. J. C 79, 257 (2019)
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Amplitude
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= [ransverse amplitude is
' distance of muon at point

| p = (X, P, ¥, P,) from beam
core in phase-space

= Normalise phase space to
RMS beam ellipse

50001

7 = Related to transverse
T emittance by

amplitude [mm] AJ_ — € (p _ ﬁ)TZ_l(P _ ﬁ);
with £ = 4D covariance matrix

= Conserved quantity in normal accelerators
= Jonization cooling reduces transverse momentum spread, reducing

amplitude

= Mean amplitude (4,) ~ RMS emittance
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Amplitude Change Across Absorber — 'Flip Mode’
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= No absorber — similar number of core muons

= With absorber — increase in number of core muons

= Cooling signal
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140 MeV/c data

Nature volume 578,
pages 53-59 (2020)
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Ratio of core densities — ‘Flip Mode’
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Nature volume 578,
pages 53-59 (2020)

10 20 3:0 40 20 40 20 : 20 60
Amplitude [mm]
= Ratio of downstream over upstream CDFs
= Core density increase for LH, and LiH absorber — cooling

= More cooling at higher emittances
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‘Solenoid Mode” Amplitude Change

Solenoid Mode Amplitude Distributions
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Emittance reduction in 'Flip Mode'
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Wedge Absorber Simulation
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Phase Space Densities Phase Space Densities
= Reverse emittance exchange with wedge
i absorber, essential for 6D cooling
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SECTION 1-1
OPTIONS 4 et 5
:1000

SECTION 2-2
OPTIONS 4 et 5
:1000

nuStorm R ’ (

= Neutrinos from StORed Muons — “nuSTORM"”
= Precise measurement of v interaction cross-sections
= Precise probe of neutrino oscillations
= Search for sterile neutrinos and other BSM physics
= Future neutrino experiments (DUNE, T2HK) high-statistics, likely systematics limited
= Neutrino-nucleus interaction cross-sections major contributor

= Percent-level cross-section measurements with nuSTORM - significant in reduction
of systematics
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NUSTORM as a Demonstrator
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D. Adey et al, Overview of the Neutrinos from Stored Muons Facility - nuSTORM, J. Inst. (2017)

= Hurdles still to address in Muon Collider design
= Solenoidal focusing target for both-sign muon capture
= Radiation load, energy deposition on superconducting magnets
= Collective effects: space charge, plasma loading of cavities
= High field solenoids + low-freq RF cavities
= Longitudinal cooling not yet demonstrated
= Tighter focusing, lower emittance cooling than MICE
= Operational experience for Muon Collider
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Summary

P

. . . .. o i m

= Muon cooling is last “in-principle” challenge for neutrino factory or
muon collider R&D

= MICE has measured the underlying physics processes that govern
cooling

= MICE has made an unprecedented single particle measurement of
particle trajectories in an accelerator lattice

= MICE has made the first observation of ionization cooling
= Nature volume 578, pages 53-59 (2020)

= Opens the door for high luminosity muon beam facilities as a probe
of fundamental physics
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Spectrometer | s
; SolenOId N " 4 = Spectrometer solenoids
NN | - 2172 upstream and downstream

= 400 mm diameter bore, 5 coil
assembly

= Provide uniform 2-4 T solenoid
field for detector systems

= Match coils enable choice of
beam focus
Focus coil module provides
final focus on absorber

= Dual coil assembly - possible
to flip polarity
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Beam densities
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= Density normalised to upstream sample
= Core density increase for LH2 and LiH absorber — cooling
= More cooling for higher emittances
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Reverse Emittance Exchange

u In fU” pI‘OCGSS, beam paSSeS Incident Muon Beam A Ap/p
through a wedge absorber, < NAY ."
followed by a dipole magnet < A

Wedge Absorber

= [ransverse phase-space density is P

increased at cost of decrease in Dipole Magnet

longitudinal phase-space density Outgoing Muon Beam

= In MICE, 45° polythene wedge
absorber was placed between
trackers to study exchange
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Emittance Evolution
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= Emittance evolution for Neutrino Factory and Muon Collider facilities

v v & Science & Technology Facilities Council

warwick = ISIS ’8

THE UNIVERSITY OF WARWICK



