Muon Ionization Cooling Experiment: Results & Prospects

Tom Lord, University of Warwick On behalf of the MICE Collaboration XIX International Workshop on Neutrino Telescopes

Muon beams for particle physics

- Muons, elementary leptons ~200 times heavier than electrons, make excellent collider candidates
 - Avoids large QCD background from hadron collisions
 - Collisions utilise full CM energy, unlike parton-parton collisions in hadron colliders
 - Synchrotron radiation is highly supressed due to mass
 - Also suppresses beamstrahlung, reduces beam degradation
 - Larger coupling to Higgs mechanism through larger m_{μ}
- Muon beams provide high quality neutrino source nuSTORM and the Neutrino Factory
 - Well-defined spectrum and neutrino flux, $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$
 - Large v_e event rate, orders of magnitude > T2K, Minerva
- Anomalous magnetic moment (g-2), Lepton Flavour Violation searches, test of SM

Muon Collider Physics Reach

 14 TeV Muon Collider (LHC CM energy) comparable to 100 TeV protonproton collider like FCC-HH

Muon Collider and Neutrino Factory

- Both facilities utilise:
 - High power protons
 - Target \rightarrow pions
 - Capture \rightarrow muons
 - Cooling
 - Rapid acceleration
 - Storage ring

- Muon beams are unstable (muon lifetime only ~2.2 μs at rest)
- Tertiary beam production ($p \rightarrow \pi \rightarrow \mu$) \rightarrow large beam emittance
- Rapid cooling required → ionization cooling only technique fast enough!

R&D Programme

MERIT

- Demonstrated principle of liquid Mercury jet target
- MuCool Test Area
 - Demonstrated operation of RF cavities in strong B-fields
- EMMA
 - Showed rapid acceleration in non-scaling FFA
- MICE
 - Demonstrate ionization cooling principle
 - Increase inherent beam brightness → number of particles in the beam core
 - "Amplitude"

Ionization Cooling Principle $P_{T} \bigoplus_{dE/dx} p_{L} \bigoplus_{nultiple scattering} p_{L} \bigoplus_{nultiple$

- > Energy loss in absorbers reduces both p_L and p_T
- Multiple scattering heats beam
- RF cavities restore along p_L only
- > Net reduction of p_T , beam emittance (cooling)
 - strong focussing and low-Z absorber material mitigate scattering effect
 - High RF gradient required
- Cooling Equation:

$$\frac{\varepsilon_{\perp}}{ds} \sim -\frac{1}{\beta^2} \left| \frac{dE_{\mu}}{dz} \right| \frac{\varepsilon_{\perp}}{E_{\mu}} + \frac{\beta_{\perp} (13.6 \, MeV)^2}{2\beta^3 E_{\mu} m_{\mu} c^2 \, X_0}$$

 $\frac{d\epsilon_{\perp}}{ds}$ is rate of change of transverse emittance within the absorber; β , E_{μ} and m_{μ} the muon velocity, energy, and mass, respectively; β_{\perp} is the lattice betatron function at the absorber; X_0 is the radiation length of the absorber material.

Muon Ionization Cooling Experiment

- Over 100 collaborators, 10 countries, 30 institutions
- Operated at Rutherford Appleton Laboratory between 2008 and 2017

MICE aimed to:

- Demonstrate high acceptance, tight focussing solenoid lattice
- Demonstrate integration of liquid hydrogen and lithium hydride absorbers
- Validate details of material physics models
- Demonstrate ionization cooling principle and amplitude non-conservation

MICE Muon Beam line

- Muon momenta between 120 and 260 MeV/c
- Muon emittance between 2 mm and 10 mm
- Pion impurity suppressed at up to 99 % level
- The MICE Muon Beam on ISIS and the beam-line instrumentation of the Muon Ionization Cooling Experiment, JINST 7, P05009 (2012)
- Characterisation of the muon beams for the Muon Ionisation Cooling Experiment, EPJ C 73, 10 (2013)
- Pion contamination in the MICE muon beam, JINST 11 (2016)

Cooling Channel Lattice

- Spectrometer solenoids upstream and downstream provide uniform 2-4 T field for SciFi trackers / detector systems
- Focus coil module provides tight focussing on absorber
- Can flip field polarity across absorber, prevents canonical angular momentum buildup

- 65 mm thick lithium hydride absorber
- 350 mm thick liquid hydrogen absorber
 - Contained in two pairs of 150-180 micron thick Al windows
- 45° polythene wedge absorber for longitudinal emittance studies

LiH

Wedge

LH₂ vessel

Scintillating Fibre trackers

- Tracks form a helix in spectrometer solenoids
- Position of particles measured by 5 stations of scintillating fibres
- Reconstruct helix in two phases
 - Pattern recognition to reject noise
 - Kalman filter to get optimal trajectory
- Yields momentum and position of particles at reference plane
- A scintillating fibre tracker for MICE, NIM A 659, 2011
- The reconstruction software for the MICE scintillating fibre trackers, J.Inst.11, 2016

Time-of-Flight, Ckov and Calorimetry

- High precision Time-of-Flight detectors
 - Comparison of time-of-Flight with momentum enables rejection of impurities
- Threshold Cherenkov detectors provide rejection of impurities near the relativistic limit
- KLOE Light and Electron Muon Ranger provide calorimetry and rejection of decay electrons in downstream region
- Electron-Muon Ranger (EMR)
 Performance in the MICE Muon
 Beam, JINST 10 P12012 (2015)
- The design and commissioning of the MICE upstream time-offlight system, NIM A 615 (2010) 14-26

Reconstructed Data

- Energy loss and multiple Coulomb scattering underlie ionization cooling emittance decrease
- Precision measurement of multiple coulomb scattering
- Validation of energy loss model

Measurement of Beam Properties

- MICE individually measures every particle
- Accumulate particles into a beam ensemble
- Can measure beam properties with unprecedented precision
- E.g. coupling of x-y from solenoid fields

First particle-by-particle measurement of emittance in the Muon Ionization Cooling Experiment, *Eur. Phys. J.* C **79**, 257 (2019)

Amplitude

- Transverse amplitude is distance of muon at point $p = (x, p_x, y, p_y)$ from beam core in phase-space
 - Normalise phase space to RMS beam ellipse
- Related to transverse emittance by T = 1

 $A_{\perp} = \epsilon_{\perp} (p - \bar{p})^T \Sigma^{-1} (p - \bar{p}),$ with $\Sigma = 4D$ covariance matrix

- Conserved quantity in normal accelerators
- Ionization cooling reduces transverse momentum spread, reducing amplitude
- Mean amplitude $\langle A_{\perp} \rangle \sim \text{RMS}$ emittance

- No absorber \rightarrow similar number of core muons
- With absorber \rightarrow increase in number of core muons

Ratio of core densities – 'Flip Mode'

- Ratio of downstream over upstream CDFs
- Core density increase for LH_2 and LiH absorber \rightarrow cooling
- More cooling at higher emittances

'Solenoid Mode' Amplitude Change

- 140 MeV/c data
- Core density increase for LH₂ & LiH absorbers
- More cooling at higher emittances
- Heating in 3mm beam

Emittance reduction in 'Flip Mode'

- Matched distribution selected in upstream sample using rejection sampling
 - 4D Normalised emittance, defined as: $\epsilon_{\perp} = \frac{1}{m_{\mu}} \sqrt[4]{|\Sigma|}$
 - $\Delta \epsilon_{\perp} = \epsilon_{downstream} \epsilon_{upstream}$
 - Σ = covariance matrix
- Slight heating in no absorber, empty LH₂ beams
- Clear emittance reduction in LiH, Full LH_2 beams cooling

Wedge Absorber Simulation

MICE

- Reverse emittance exchange with wedge absorber, essential for 6D cooling
 - Increase in transverse phase-space density
 - Decrease in longitudinal phase-space density
- Kernel Density Estimation (KDE) technique used to calculate phase-space density
- Data analysis in progress

Neutrino Source (Proposed) Electron SECTION 1-1 SECTION 2-2 OPTION 4 - SECTION 3-3 TN(Neutrino) **OPTIONS 4 et** OPTIONS 4 et 5 1.500 Neutrino T61 Neutrino Muon nuStorm

- Neutrinos from StORed Muons "nuSTORM"
 - Precise measurement of v interaction cross-sections
 - Precise probe of neutrino oscillations
 - Search for sterile neutrinos and other BSM physics
- Future neutrino experiments (DUNE, T2HK) high-statistics, likely systematics limited
- Neutrino-nucleus interaction cross-sections major contributor
- Percent-level cross-section measurements with nuSTORM → significant in reduction of systematics

cience & Technology Facilities Council

D. Adey et al, Overview of the Neutrinos from Stored Muons Facility - nuSTORM, J. Inst. (2017)

- Hurdles still to address in Muon Collider design
 - Solenoidal focusing target for both-sign muon capture
 - Radiation load, energy deposition on superconducting magnets
 - Collective effects: space charge, plasma loading of cavities
 - High field solenoids + low-freq RF cavities
- Longitudinal cooling not yet demonstrated
- Tighter focusing, lower emittance cooling than MICE
- Operational experience for Muon Collider

- Muon cooling is last "in-principle" challenge for neutrino factory or muon collider R&D
- MICE has measured the underlying physics processes that govern cooling
- MICE has made an unprecedented single particle measurement of particle trajectories in an accelerator lattice
- MICE has made the first observation of ionization cooling
 - Nature volume 578, pages 53-59 (2020)
- Opens the door for high luminosity muon beam facilities as a probe of fundamental physics

Backup

Magnets

- Spectrometer solenoids upstream and downstream
 - 400 mm diameter bore, 5 coil assembly
 - Provide uniform 2-4 T solenoid field for detector systems
 - Match coils enable choice of beam focus
- Focus coil module provides final focus on absorber
 - Dual coil assembly possible to flip polarity

Beam densities

- Density normalised to upstream sample
- Core density increase for LH2 and LiH absorber \rightarrow cooling
- More cooling for higher emittances

Reverse Emittance Exchange

- In full process, beam passes through a wedge absorber, followed by a dipole magnet
- Transverse phase-space density is increased at cost of decrease in longitudinal phase-space density
- In MICE, 45° polythene wedge absorber was placed between trackers to study exchange

Emittance Evolution

Emittance evolution for Neutrino Factory and Muon Collider facilities

