

Technische Universität München

RES-NOVA: Archaeological Pb observatory for astrophysical neutrino sources

luca.pattavina@lngs.infn.it

XIX International Workshop on Neutrino Telescopes

L. Pattavina

Which are the main challenges ? How do we detect SN neutrinos ? How does RN work? What can we learn with RN?

OUTLINE

Problem I: SN rate too low

Galactic SN rate is 1.63±0.46 SN/100y [New Astron. 83 (2021) 101498] Not uniform throughout the Galaxy

Known past Galactic SNe

Date	Location	Common Name	Dist. (kpc)
1006 Apr 30	Lupus	SN 1006	1.56 ^a
1054 Jul 4	Taurus	Crab	2.0
1181 Aug 6	Cassiopeia	SN 1181	3.2
1572 Nov 6	Cassiopeia	Tycho	2.3
1604 Oct 9	Ophiuchus	Kepler	2.9
1671 ^b	Cassiopeia	Cas A	3.4

The, L.S., Clayton, D. D., Diehl, R., et al. 2006, A&A, 450, 1037

 \rightarrow Need to survey D > 3 Mpc Highly sensitive neutrino detector

Problem II: SN composite neutrino signal

 v_x is the most **intense** component of the flux

Current SN neutrino detectors are mostly sensitive to anti- v_e/v_e Need for a **flavor independent** channel sensitive also to anti- v_x/v_x

ID Hydro-dynamical simulation of a 27 M SN (LS220 EoS) occurring at 10 kpc

 v_x is the most **energetic** component of the flux

Coherent elastic neutrino-Nucleus scattering Neutrino energy **Form factor** $\sigma_{CE\nu NS} = \frac{G_F^2}{4\pi} F^2(q) Q_W^2(N) \overset{\checkmark}{E_\nu^2}$ Pb

Electroweak-charge

Neutral current process

 \rightarrow equally sensitive to all flavours

High cross-section

 \rightarrow >10⁴ than NC

Threshold-less process

→ sensitive to the entire v emission

CEVNS ideal channel for SN **neutrino detection**

A. Drukier and L. Stodolsky, Phys. Rev. D 30, 2295 (1984)

- Pb is the element with the highest CEvNS x-section
- Pb has with the highest nuclear stability
- Highly efficient target for SN neutrinos

Pb: ideal target for CEvNS

 $27 M_{\odot}$ SN (LS220 EoS) occurring at 10 kpc

- Pb is the element with the highest CEvNS x-section
- Pb has with the highest nuclear stability
- Highly efficient target for SN neutrinos

Pb: ideal target for CEvNS

Expected signal: → low energy nuclear recoil O(keV)

RES-NOVA: Pb-based CRYO DETECTORS

Cryogenic detectors are a leading technology: <u>Neutrinoless ββ decay</u>: low background level Direct dark matter: low energy threshold

- T Easily scalable technology (up to 1000 detectors) 1 Excellent energy resolution from sub-keV to MeV [†] Particle ID for scintillating cryogenic detectors
- Fully active detectors low bkg

RES-NOVA: Pb-based CRYO DETECTORS

Cryogenic detectors are a leading technology: <u>Neutrinoless ββ decay</u>: low background level Direct dark matter: low energy threshold

- **†** Easily scalable technology (up to 1000 detectors) 1 Excellent energy resolution from sub-keV to MeV [†] Particle ID for scintillating cryogenic detectors
- Fully active detectors low bkg

9

Which Pb?

Archaeological Pb is "old enough" (e.g. Roman Pb) to ensure a negligible ²¹⁰Pb concentration: < I mBq/kg

N. Nosengo, Nature (2010), 10.1038/news.2010.186

Low-background/Commercial Pb: high ²¹⁰Pb concentration (Q_β-value: 63 keV, $T_{1/2}$ = 22.3 y): 100 Bq/kg

Nuclide	Low background Pb (Boliden®) [1]	Archaeological Pb [2, 3]
232Th	<46 µBq/kg	<45 µBq/kg
238U	<31 µBq/kg	<46 µBq/kg
210Pb	(2.3±0.4) · 10 ⁷ µBq/kg	<715 µBq/kg

[1] G. Heusser, Ann. Rev. Nucl. Part. Sci. 45 (1995) 543-590.

[2] L. Pattavina et al., Eur. Phys. J. A (2019) 55: 127.

[3] CUORE Coll., Eur. Phys. J. C (2017) 77: 543.

RES-NOVA design

Size: Threshold: SN @ 10 kpc:

RN-1 @ LNGS (60 cm)³ 1 keV ~50 counts

RN-I small volume cryogenic facility

Detector mass: 1.8 tons

Array of 500 cryo-detectors

Energy threshold: IkeV

RES-NOVA energy response

RES-NOVA time response

- Detector time resolution:100 µs
- High interaction rate in the detector
- Identification of SN models
- Study of the neutrino emission

RES-NOVA background model

MC simulation of the detector response to radioactive background sources (no veto included)

Background rate in ROI [1,30] keV vs Detector multiplicity

Different signal multiplicity → Different background rate

RES-NOVA-I sensitivity (medium-far distances)

SN signal significance in RES-NOVA-I

- RNI total active volume (60 cm)³ of PbWO₄
- Full investigation of the MW galaxy
- When particle ID is in place, RNI reaches out to Magellanic Clouds
- Competitive with other CEvNS detectors techs, but with a smaller detector volume

RES-NOVA-I sensitivity (near distances)

- High interaction rate expected
- Conventional monolithic (giant) detectors have problems in handling:
 - data handling/storage
 - neutrino energy reconstruction/pile-up (e.g. slow) neutron capture time $\sim 200 \ \mu s$)
 - Only "bolometric" measurement \leq 5 kpc
- Solution: high molularity detector

RN: CCSN total reconstructed energy

- We parametrized the neutrino energy spectrum:
- $\langle \mathbf{E} \rangle$ and $\mathbf{A}_{\mathbf{T}}$ are inferred by a maximum likelihood analysis
- α_{T} is the time average over the relevant time interval

 $f^{0}(E; \langle E \rangle, \alpha_{T}) = A_{T} \xi_{T} \left(\frac{E}{\langle E \rangle}\right)^{\alpha_{T}} \exp\left(-\frac{(1 - \alpha_{T})^{\alpha_{T}}}{1 - \alpha_{T}}\right)^{\alpha_{T}} \exp\left(-\frac{(1 - \alpha_{T})^{\alpha_{T}}}{1 - \alpha_{T}}}\right)^{\alpha_{T}} \exp\left(-\frac{(1 - \alpha_{T})^{\alpha_{T}}}{1 - \alpha_{T}}}\right)^{\alpha$

Neutrino fluence

Normalization

Pinching parameter

 $\mathcal{E}_{\rm tot} = 4\pi d^2 A_T \langle E \rangle$

Precision in total SN energy reconstruction v_x /anti- v_x vall/anti-vall RN-I 30% SK - IBD only 25% 8% RN-2

SK - IBD+ES+NCR 11%

A. Gallo Rosso et al., JCAP 04 (2018) 040

LP et al., Phys. Rev. D 102, 063001 (2020)

4%

RN-3

Conclusions

- RES-NOVA is a newly proposed underground experiment @ LNGS:
 - CEvNS + Archeo-Pb + Cryo-detectors
 - *cm-scale* neutrino telescope
- The technology for the experiment realization is already established
- RES-NOVA (and CEvNS) can provide a complementary approach to the current SN neutrino observatories
- Archaeological Pb is an ideal material for CEvNS applications

L. Pattavina, N. Ferreiro Iachellini, I. Tamborra, Phys. Rev. D 102, 063001 (2020) [<u>ArXiv</u>]

BH properties

