

Measuring cross-sections of high-energy neutrinos with FASERv at the LHC

February 19th, 2021

Yosuke Takubo (KEK)

On behalf of FASER collaboration

XIX International Workshop on Neutrino Telescopes

FASERv in FASER

- <u>FASER</u> is a new experiment to search for new long-lived particles and measure cross-sections of neutrinos, that are produced in pp collisions at ATLAS Interaction Point (IP), starting in 2022.
- The detector will be installed 480 m downstream of ATLAS IP (TI12).
- <u>FASERv</u> is a part of FASER detector dedicated for neutrino measurements.
- FASER will be the first experiment to measure neutrinos created in beam collisions.

FASERv detector (Emulsion detector)

770 layers of an emulsion film and 1mm tungsten plate
> 25 cm × 30 cm × 1.1 m, 1.1 tons, 220 X₀

3

- The emulsion films will be replaced every 30-50 fb⁻¹ during LHC technical stop.
- Measured particle (muon) flux was ~500 Hz at FASER with 2×10^{34} cm⁻²s⁻¹ in 2018 run which gives an acceptable detector occ. for physics.
- Measured radiation level low enough for detector performance requirements ($<5 \times 10^7$ 1MeV n_{eq}/year).

FASERv detector (IFT & Veto)

- Silicon strip tracker (IFT: InterFace Tracker) will be used as the interface for tracking with FASER spectrometer behind it.
 - > Charge identification of muons is possible with three 0.55 T dipole magnets in the spectrometer (3.5 m length in total).
- Veto scintillator station in front of FASERv rejects charged particles coming from upstream of FASERv.
 - > Allows matching of the signal muon tracks in IFT and spectrometer.

Charged current interaction (1)

- FASERv will measure neutrino cross-sections at TeV region which is uncovered by existing experiments.
- All neutrino flavors in Charged Current (CC) interactions can be identified, thanks to excellent position resolution of the emulsion detector.

Differences between the generators checked with the same propagation model (RIVET-module)

	DPMJET	SIBYLL	Pythia8
v_e , $ar{v}_e$	3390 , 1024	800 , 452	826 , 477
$ u_{\mu}$, $ar{ u}_{\mu}$	8270, 2391	6571 , 1653	7120 , 2178
$ u_{ au}$, $ar{ u}_{ au}$	111 , 43	16 , 6	22 , 11

With 150 fb⁻¹

5

Charged current interaction (2)

- CC cross-sections at TeV region will be measured for all neutrino flavors.
 - > Lepton flavor universality in neutrino sector can be investigated.
- The charge measurement in cooperation with spectrometer behind FASERv enables to separate $v_{\mu}/\overline{v}_{\mu}$.

Neutral current interaction

- FASERv also measures cross-section of Neutral Current (NC) neutrino interactions [arXiv: 2012.10500].
- Non-Standard Interaction (NSI) can be explored in conjunction with measurement of CC cross-section.

DIS cross-section of CC/NC interactions

Expected sensitivity to NSI (up-quark)

Forward charm production

- Atmospheric neutrinos from charm decays (prompt neutrino) could be an important background for astrophysics neutrino observations.
 > Only upper limit was given by IceCube.
- $gg \rightarrow cc$ is the leading order for cham production in perturbative QCD.
- Proton-proton collision at LHC corresponds to ~100 PeV proton interaction with fixed target.
 Neutrino spectra measured at [Ice

Measurement of production cross-section of heavy mesons at LHC can provide constraint on the prompt flux (current syst. error is O(1)).

Charm/strange PDF

- There is a controversial prediction in which an additional charm component exists in a proton (so-called intrinsic charm).
- It only affects the forward charm production $(cg \rightarrow cg)$ in pp collisions, to which v_e/v_τ energy spectrum in FASERv is sensitive.

 μ^{-}

 W^+

 V_{cs}

s (+d)

Theoretical interest in QCD

- FASERv can explore charm production (gg \rightarrow cc) at Q ~ 2 GeV with x ~ 10⁻⁷, where gluon saturation by color glass condensation appears.
- Measurement of muon/neutrino flux and energy spectrum constrains production of primary hadrons (mainly pions and kaons).
 - The results can be used to validate/improve cosmic ray MC, especially to understand muon excess.
 Muon excess from prediction

Pilot data-taking (1)

- The pilot runs were taken place for neutrino detection and flux measurement of charged particles at tunnels TI12 and TI18 in 2018.
 - > FASER/FASERv will be installed at T12.
 - > TI18 is the tunnel at the same distance from ATLAS IP as TI12 but opposite side.
- The neutrino detection was performed with a 30 kg emulsion detector installed at TI18, collecting 12.5 fb⁻¹ of data.

Pilot data-taking (2)

- The data analysis is ongoing for the first observation of neutrinos originated from proton-proton collisions at LHC.
- 18 candidates of the neutral vertex were detected.

> Selection criteria: # track >= 5 for tan θ < 0.1, <= 4 for tan θ > 0.1

- The multivariate analysis is ongoing for the signal extraction.
- The journal paper is under preparation.

12

Neutrino event candidates

Detector construction/installation (1)

- Detector installation is ongoing and all components except for FASERv will be installed until March 2021
 - > Installation of FASERv will start in October 2021.
- FASERv will be placed on the LOS (Line Of Site) to maximize the flux of all neutrino flavors (the trench dug allows this).
- Handling infrastructure has been installed to transport detector in/out of the trench and over the LHC machine.

Detector construction/installation (2)

- Assembly of IFT will start on April and will be installed into FASER in October 2021.
 - > The same design as the tracker station in the spectrometer will be adopted for IFT.
- Production of the emulsion films will be done in second half of 2021.

Detector upgrade for HL-LHC

- Detector upgrade (FASERv2) is being discussed to secure much larger target mass at HL-LHC in the context of [Forward Physics Facility].
- 10 times bigger target mass and 20 times larger integrated luminosity
- \rightarrow 200-fold increase in neutrino event rate
- Snowmass LOI was submitted: [Physics], [Detector]

B-B

Collaboration & Foundation

FASER collaboration consists of 8 countries, 18 institutes and 65 members.

Foundation

- FASER: Heising-Simons, Simons Foundations
- FASERv: Heising-Simons Foundation, ERC, JSPS and the Mitsubishi Foundation
- CERN for infrastructure costs

Summary & Conclusions

- FASERv is the detector in FASER experiment to measure cross-section of high energy neutrinos with ~1 TeV originated from proton-proton collisions at LHC.
 - > First experiment making use of beam collisions as neutrino source.
- FASERv can measure cross-section for all neutrino flavors, thanks to excellent position resolution of the emulsion detector.
- FASERv is sensitive to charm/strange PDF in a proton as well as production of primary hadrons.
- Assembly of IFT start in April 2021 and the emulsion detector is also being prepared, aiming data-taking at LHC Run3 in 2022.
- The detector upgrade towards HL-LHC era (FASERv2) is under discussion with a prospect to increasing neutrino statistics by 1-2 order of magnitude.

Systematic error on neutrino flux

- The error bars correspond to the statistical error.
- The range of flux estimates with different MC generators are assigned as systematic error with shaded area.
 - > The error on neutrino flux is being evaluated.

Neutrino detection with emulsion

- The emulsion detector accumulates all tracks for certain data-taking period, and the tracks are reconstructed by scanning the films afterwards.
- The position resolution of $\sim 1 \ \mu m$ can be achieved but timing information is not available.
- About 30% of energy resolution can be realized in measurement with neural network method. Expected energy resolution

Energy measurement with ANN algorithm

The following variables are used as input for artificial neural network algorithm to evaluate energy resolution with the emulsion films.

Topological variables		Related to
<i>n</i> tr	Multiplicity of charged tracks at the neutrino interaction vertex with momentum $p_{tr} > 0.3$ GeV and angle tan $\theta_{tr} < 0.3$	$E_{\rm had}$
n_{γ}	Photon multiplicity	E_{had}
$ 1/\theta_{\ell} $	Inverse of lepton angle with respect to neutrino direction	E_ℓ
$\sum 1/\theta_{had} $	Sum of inverse of hadron track angles	$E_{\rm had}$
$1/\theta_{\rm median}$	Inverse of the median of the track angles of all charged particles	$E_{\rm had}, E_{\ell}$
Track momentum via M	ICS	
$p_{\ell}^{ m MCS}$	Estimated lepton momentum from MCS	E_ℓ
$\sum p_{\rm had}^{\rm MCS}$	Sum of estimated charged hadron momenta from MCS	$E_{\rm had}$
Energy in showers		
$\sum E_{\gamma}$	Sum of energy in photon showers	$E_{\rm had}$

Astrophysics neutrino & prompt flux at IceCube

- Uncertainty on conventional atmospheric neutrino flux (Φ_{conv}) is ~30% and absorbs any uncertainty which influences the global flux norm..
- The cosmic ray spectrum parameterized as $\Delta \gamma_{CR}$ also affects the expectation of Φ_{conv} and prompt flux (Φ_{prompt}).
- Φ_{prompt} is a free parameter in the fitting and currently zero consistent.
- Astrophysical parameters (Φ_{astoro} , γ_{astro}) are found to be almost independent from Φ_{prompt} .

Parameter	Best-Fit	68% C.L.
$\Phi_{ m astro}$	0.90	0.62 - 1.20
$\gamma_{ m astro}$	2.13	2.00 - 2.26
Φ_{prompt}	0.00	0.00 - 0.19

Muon excess in extensive air showers

- Excess of muons with respect to the prediction (8σ) are observed in cosmic ray experiments.
- The hadronic interaction models used for the prediction were developed by using results of measurement in LHC and SPS.
- Measurement of muon/neutrino flux at FASER/FASERv will provide feedback to the interaction model.

Gluon saturation in proton (1)

- The parton PDF for (x > 10⁻³, Q > 2 GeV) can be described by DGLAP equation.
- The gluon saturation for proton is expected to start at (x ~ 10⁻⁶, Q ~ 2 GeV).

> Q < 1 GeV is region where QCD cannot be described perturbatively.

- The charm production in pp collisions at LHC (gg \rightarrow cc) realizes (x ~ 10⁻⁷, Q ~ 2 GeV).
- PDF with gluon saturation is used for perturbative calculation of the charm production in $gg \rightarrow cc$ at FASER, therefore, FASERv can be sensitive to the gluon saturation effects.

Gluon saturation in proton (2)

From F. Kling's presentation

Cham-associated neutrino events

- FASERv can measure neutrino interactions associated with D-mesons in the final states.
- 10-20% of neutrino interaction at FASERv is accompanied with Dmesons.
 Fraction of neutrino events
- The emulsion detector can identify Dmesons, measuring tracks and their decay products.

26

Beauty-associated neutrino events (1)

- Results in measurements in of $B \rightarrow D^* \ell \nu$, $B \rightarrow K^* \ell \ell$ and $B^+ \rightarrow K^+ \ell \ell$ suggest lepton universality violation.
- The neutrino interactions in FASERv are the same as them, exchanging the internal/external lines in Feynman diagrams.

 $\mathcal{R}(D) = \frac{\mathcal{B}(B \to D\tau \nu_{\tau})}{\mathcal{B}(B \to D\ell \nu_{\ell})},$ $\mathcal{R}(D^*) = \frac{\mathcal{B}(B \to D^*\tau \nu_{\tau})}{\mathcal{B}(B \to D^*\ell \nu_{\ell})}$

Beauty-associated neutrino events (2)

- Since cross-section of these processes are suppressed by a factor of $O(V_{ub}^{2})\sim 10^{-5}$, beauty-associated neutrino events cannot be observed at FASERv in Run3 in SM.
 - > Expected number of the events: O(0.1)
- But, the observation means discovery of new physics.
- In addition, lepton universality violation in the third generation can be investigated with sensitivity to v_{τ} .

Sterile neutrino oscillation

- SM excludes possibility of neutrino oscillation in FASER condition.
 - \longrightarrow If appearance or disappearance events are observed, it indicates existence of sterile neutrino.
- For ν_e, FASERν has sensitivity to 2.7σ discovery region with Gallium detector [arXiv:1006.3244].
 Expected sensitivity to neutrino oscillation

Support from Foundations & Grants

- Heising-Simons Foundation Grant Nos. 2018-1135, 2019-1179, 2020-1840
- Simons Foundation Grant No. 623683
- JSPS KAKENHI Grant No. JP19H01909, JP20K04004, JP20H01919
- ERC
- Mitsubishi Foundation
- Joint research program of the Institute of Materials and Systems for Sustainability
- CERN for infrastructure costs