Ultrahigh-Energy Cosmic Rays State of the Art and Implications for Current and Future Multi-Messenger Experiments Michael Unger, IAP, KIT

Ultrahigh-Energy Cosmic Rays State of the Art and Implications for Current and Future Multi-Messenger Experiments Michael Unger, IAP, KIT

UHE Universe

Energy Spectrum of Ultrahigh-Energy Cosmic Rays (UHECRs)

Energy Spectrum of Ultrahigh-Energy Cosmic Rays (UHECRs)

Detection of UHECRs: Air Showers

fluorescence telescope

particle detector

Telescope Array Minchie 35 40 kiv

UHECR Observatories

Pierre Auger Observatory

Telescope Array

UHECR Observatories

Pierre Auger Observatory

Telescope Array

UHECR Observatories

Pierre Auger Observatory

NB: Excellent UHE ν and γ **Detector!** (see talks by <u>Viviana Scherini</u> and Michael Schimp, Tuesday Parallel2)

State of the Art of UHECR Research

Energy Spectrum

Mass Composition

Arrival Directions

State of the Art of UHECR Research

ANNI DENN

irections

Mass Composition

Longitudinal Shower Development (Fluorescence Telescopes)

Mean and Standard Deviation of $\mathrm{X}_{\mathrm{max}}$ Distributions

Pierre Auger Coll., ICRC17, see also update at ICRC19; TA Coll. ApJ18; TA&Auger Composition WG UHECR18; MIAPP review, FASS19

Inferred Mass Composition

Energy Spectrum

Energy Spectrum

Measurement of Local CR Energy Density

$$\begin{split} \rho &= 4\pi/c \int_{E_{\text{ankle}}}^{\infty} E \operatorname{Flux}(E) dE \\ &= (5.66 \pm 0.03 \pm 1.40) \times 10^{53} \operatorname{erg Mpc}^{-3} \\ \rightarrow \text{source luminosity density} \\ \mathcal{L} \sim \rho/t_{\text{loss}} = 2 \times 10^{44} \operatorname{erg Mpc}^{-3} \operatorname{yr}^{-1} \end{split}$$
Typical energy loss time $t_{\text{loss}} \sim 1 \operatorname{Gpc/c}$ at $E_{\text{ankle}} = 5 \times 10^{18} \operatorname{erg}$
Full calculation with SimProp gives $\mathcal{L} = 6 \times 10^{44} \operatorname{erg Mpc}^{-3} \operatorname{yr}^{-1})$

Pierre Auger Coll., PRD 2020, PRL 2020 (twice editor's choice)

GZK Flux Suppression? $(p + \gamma_{\text{CMB}} \rightarrow n/p + \pi^{+/0} \text{ or } A + \gamma_{\text{CMB}} \rightarrow (A-1) + p/n)$

MIAPP review, Front.Astron.Space Sci. 6 (2019) 23

Maximum Rigidity Model, Peters Cycle?

energy spectrum at source $\propto (E/Z)^{-\gamma}$

State of the Art of UHECR Research

Mass Composition

Arrival Directions

ANTIHINY DENY

Arrival Directions – Blind Search

Auger/TA Anisotropy Working Group UHECR18 E > 40/52.3 EeV, 20 $^{\circ}$ top-hat 0.21%/2.5% post-trial

Arrival Directions – Catalogue-based Analysis

TA compatible with both, starburst model and isotropy TA Coll, ApJ Lett. 867 (2018) L27

UHECR total energy loss lengths

L. Caccianiga for the Pierre Auger Coll. ICRC19, ApJ853 (2018) 2

Observation of a Dipolar Anisotropy of UHECRs (E> 8 EeV)

Observation of a Dipolar Anisotropy of UHECRs (E > 8 EeV)

Charged Particle Astronomy?

average rigidity R = E/Z

deflection in magnetic field

Implications for Current and Future Multi-Messenger Experiments

Need Charge Sensitivity and Full-Sky Coverage for UHECR Observations

Under Construction: AugerPrime

Under Construction: TAx4

arXiv:1604.03637

Launch 2029: POEMMA?

EPJ 210 (2019) 06001

 $15/24 \\ {\rm Parallel03\ at\ 17:30,\ PRD\ 101\ (2020)\ 023012} \\$

Implications for Neutrino Studies

Peters Cycle and Cosmogenic Neutrinos

 $m = -1.6; \alpha = +1.0; \log(R_{max}/V) = 18.7$

negative source evolution (m=-1.6) and $z_{\sf max}=1$ $\,\,$ Batista et al, JCAP 01 (2019) 002 $\,\,$

negative source evolution (m = -1.6) and $z_{max} = 1$ Batista et al. JCAP 01 (2019) 002

Peters Cycle and Cosmogenic Neutrinos

Photonuclear Interactions in Source Environment?

MU+15, Globus+15, Biel+17, Kachelriess+17, Supanitsky+18, Boncioli+19, Muzio+19

Virgo Cluster sim., R.A. Batista et al, arXiv:1811.03062

Photonuclear Interactions in Source Environment?

Multimessenger Studies of Source Properties photon field temperature source evolution

M. Muzio, MU, G. Farrar PRD100 (2019) 103008 (see also Møller+2019 and van Vliet+2019)

Source Neutrinos from UHECR Constraints

Source Neutrinos from UHECR Constraints

additional degree of freedom: hadronic interactions with ambient gas \rightarrow unified models $_{\rm e.g.\ Kachelriess+17,\ Fang+2017,\ Muzio+21 (in \ prep.)}$

Summary

Golden Age of UHECR Research

- high-precision flux measurement
- unexpected mass composition
- large scale anisotropy
- hints for clustering at intermediate angular scales
- soon equal-exposure sky coverage (TAx4) and charge sensitivity (AugerPrime)
- next-generation large-exposure facilities? (POEMMA, GCOS...)

Multi-Messenger Implications

- dawn of charged particle astronomy?
- low flux of cosmogenic neutral secondaries
- UHECR proton measurements and $> 10^{18}~{\rm eV}~\nu$ flux for source evolution
- detection (or limits on) source-neutrinos is key to understand UHECR sources
- $10^{16} 10^{17} \ {\rm eV} \ \nu$ flux to constrain source properties

Advertisement www.auger.org/opendata

Pierre Auger Observatory Open Data

The Pierre Auger 2021 Open Data is the public release of 10% of the Pierre Auger Observatory data presented at the <u>36th International Cosmic Ray</u> <u>Conference</u> held in 2019 in Madison, USA, following the <u>Auger collaboration open data policy</u>.

This website hosts the datasets for download. An online event display is available to explore the released events, and example analysis codes are provided. See below for a brief overview of the Pierre Auger Observatory and of the Auger Open Data.

\mathbf{i}

Datasets

the complete released datasets and their complementary data

O Visualize

an online look at the released pseudo raw data

Analyze

example analysis codes in online python notebooks to run on the datasets