

The Short Baseline Neutrino Program

at Fermilab

Angela Fava - FNAL

for the SBND, MicroBooNE and ICARUS Collaborations

The puzzling picture of short baseline ν oscillations

Three independent classes of anomalous experimental results in the last 20 years, not fitting into the "standard" landscape of 3-flavour ν mixing:

- disappearance of anti- v_e detected from near-by nuclear reactors;
- disappearance of v_e from intense calibration sources in solar v experiments;
- appearance of v_e/\bar{v}_e in v_μ/\bar{v}_μ beams at particle accelerators.

Experiment	Туре	Channel	Significance
LSND	DAR accelerator	$\bar{\nu}_{\mu} ightarrow \bar{ u}_{e}$	3.8 σ
MiniBooNE	SBL accelerator	$ u_{\mu} ightarrow u_{e}$	4.5 σ
		$\bar{\nu}_{\mu} \rightarrow \ \bar{\nu}_{e}$	2.8 σ
GALLEX/SAGE	Source – e capture	v_e disappearance	2.8 σ
Reactors	β decay	$\bar{\nu}_e$ disappearance	3.0 σ

Each possibly explained by nonstandard "sterile" neutrino state(s) driving oscillations at $\Delta m^2_{new} \approx 1 \text{ eV}^2$ and relatively small sin²($2\vartheta_{new}$), but no model so far successful in fitting all experimental results at once.

🌫 Fermilab

2/24/2021

Short Baseline Neutrino Program at Fermilab

Program aimed at definitely solving the "sterile neutrino puzzle" by exploiting:

- \circ the well characterized FNAL Booster ν beamline;
- $\circ~$ three detectors based on the same liquid argon TPC technique.

🛟 Fermilab

2/24/2021

SBN goals

• MicroBooNE

Understand the nature of the MiniBooNE "low energy" excess anomaly, using the same beam.

• SBND + ICARUS

Search for short baseline oscillations both in appearance and disappearance channels.

- Lay the ground for future long baseline program
 - Further develop LAr-TPC detector technology & software
 - Measure v-Ar cross sections at energies relevant to DUNE

‡ Fermilab 2/24/2021

The Booster Neutrino Beam

Liquid Argon TPC detection technique

Very well suited for the experimental study of Neutrino Physics, pioneered by Icarus Collaboration.

Massive yet homogeneous target, excellent tracking & calorimetric capabilities.

$\lambda = 128$ nm scintillation light: 40000 γ/MeV wo electric field. Response time ~ 6 ns ÷ 1.6 μs.

Ionisation electrons: 42000 e⁻/MeV. Drifted (E) toward planes of wires on which they induce a signal. Response time = drift time (~ ms).

3D image reconstruction by combining coordinates on different wire planes at the same drift time.

Characterization Control Contre

Electron neutrinos in LAr-TPC

Fine tracking & calorimetry essential for e/γ separation and π^0 reconstruction

Čerenkov detector

Acta Phys.Polon.B41:103-125

CNGS v beam direction

- Gap between vertex and shower.
- Ionization in the first segment of showers (1 mip or 2 mips).

 \circ π^0 invariant mass.

Neutrino interactions at SBN

- High statistics precision measurements of neutrino argon cross sections in the DUNE energy range.
 - SBND: word's highest statistics cross section measurements on argon, \sim 7 million ν_{μ} and \sim 50,000 ν_{e} in 3 years
 - ICARUS: high statistics electron neutrino cross section measurement using the NuMI off axis, ~ 10⁵ events/year
 - MicroBooNE is now delivering the first results on cross section measurements

$\begin{array}{c} & x \\ 10^{3} \\ 2.5 \\ 2.5 \\ 1.5 \\ 0.5 \end{array}$

2

3

4 5 6 Neutrino Energy(GeV)

2/24/2021

$v_{\rm e}$ from the NuMI off axis at ICARUS

Rich BSM searches: neutrino tridents, dark matter, millicharged particles...
 EX: MicroBooNE heavy neutral lepton search *Phys. Rev. D 101, 052001 (2020)*

0

Sterile neutrino sensitivity

Annual Rev. Nucl. Part. Sci. 2019.69:363-387

5σ coverage of the parameter area relevant to the LSND/MiniBooNE anomaly in 3 years (6.6 x 10²⁰ pot). 1 order of magnitude beyond SciBooNE + MiniBooNE limits in 3 years (6.6 x 10²⁰ pot). Probing the parameter area relevant to reactor and gallium anomalies.

🚰 Fermilab

2/24/2021

Unique capability to study appearance and disappearance channels simultaneously

The SBN detectors

- **SBND** _ construction/installation
 - 260 t of LAr (112 t active), 110 m from target.
 - 2 TPCs with 2 m drift
 - 120 8" PMTs (96 coated with TPB), 192 X-ARAPUCA modules, TPB coated reflector foils on the cathode.
 - $4\pi CRT$ (cosmic ray tagger) coverage

• MicroBooNE _ physics run completed

- 170 t of LAr (87 t active), 470 m from target.
- 1 TPC with 2.5 m drift.
- 32 8" PMTs on acrylic support coated with TPB.
- Top and side CRT.
- ICARUS _ commissioning
 - 760 t of LAr (476 t active), 600 m from target.
 - 4 TPCs with 1.5 m drift.
 - 360 8" PMTs coated with TPB.
 - Almost full CRT coverage.

MicroBooNE is now producing the world's first high statistics measurements of v-Ar interactions

• Enables in depth studies of both inclusive channels and exclusive final states

🚰 Fermilab

2/24/2021

MicroBooNE Anomalous Low-Energy Excess Search Strategy

160 Events

120

40

20

- Multiple analyses covering different final states \bigcirc
- Single photon analysis MICROBOONE-NOTE-1087-PUB
 - 1γ 0p+ 1γ 1p (targeting NC $\Delta \rightarrow$ N γ hypothesis)
- v_e analyses
 - 1e1p (targeting CCQE hypothesis) MICROBOONE-NOTE-1086-PUB
 - 1eOp+1eNp (all MiniBooNE v_e final states) MICROBOONE-NOTE-1085
 - 1e (inclusive search) MICROBOONE-NOTE-1095-PUB

A. Fava NeuTel 2021

Prospects for MicroBooNE Low-Energy Excess Search

- The first LEE results based on 6×10²⁰
 POT data are imminent.
 - Results will be released in phases as we complete the various analyses
- Next-generation reconstruction tools show improvements in v_e reconstruction allowing more sensitive tests of the SM and MiniBooNE anomalous event excess.
- Additional stats from the analysis of the full 13×10²⁰ POT dataset will enable MicroBooNE to reach the ultimate sensitivity on the LEE search.

Status of Icarus detector

- TPC, PMT, trigger and DAQ installation activities complete, with latest achievements during Covid-19 restricted operations.
- Bottom CRT and 7 out of 8 walls of side CRT installation complete.
- 24/7 shifts since February 14th 2020. Remote only shifts since March 17th 2020.

CRT East walls complete

‡ Fermilab 2/24/2021

Activation and commissioning of Icarus detector

- TPC wire planes and cathode HV to nominal voltages on Aug 27th.
 - HV stable at -75 kV, without glitches or issues.
 - No significant currents on wire bias, except for 2 groups of Induction-2 wires of West module at 0 V (instead of -30 V).
- All PMTs switched on (3 out of 360 not working).
 - Calibration of gain with laser and fine tuning based on counting rates.
- 7 side CRT wall sections integrated into the readout.
- Cosmic-ray interaction events regularly collected with random 5 Hz trigger for calibration purposes. Dedicated runs for specific commissioning tasks (investigation of TPC noise, PMT calibration, DAQ upgrades/longevity tests, etc).
- Relatively short e⁻ lifetime $\tau \sim 2$ ms in both modules, to be compared with 1 ms maximum e⁻ drift time and required $\tau > 3$ ms (0.1 ppb O2 equiv.) goal.
 - Possibly related to insufficient gas recirculation.
 - Temporary mitigation with daily venting of gas argon.
 - Ongoing plan to regenerate gas filters and increase GAr flow.

Sample Icarus event displays

Early assessment of Icarus TPC performance

Run 2628, WW TPC: Max Track Drift Time

2/24/2021

ICARUS SCE Comparison: ΔX vs. X

- Space charge effects (SCE) measured using anode-cathode-crossing cosmic muon tracks, looking at spatial distortions in drift direction. Rough agreement with previous measurement (ICARUS Coll., JINST 15 (2020) 07, P07001) and simulation aside from small time dependence.
- Same track sample used to measure drift velocity by maximum drift time of charge associated with tracks results in line with previous ICARUS measurements to 1-2%; small discrepancies being investigated.

Icarus data taking

See talk by C. Rubbia

2/24/2021

- ICARUS detector expected to initiate data taking early in the Fall with Booster and NUMI off-axis higher energy beam. After the first year, it will be operated jointly with SBND to address the sterile neutrino puzzle within the SBN program.
- $\circ~$ Main goal of this initial one-year ICARUS data taking: definitive verification of the recent claim by NEUTRINO-4 reactor experiment both in the ν_{μ} channel with the BNB and in the ν_{e} with NUMI:
 - Survival v_{μ} oscillation probability for Neutrino-4 anomaly (black) for the best fit (Δm_{N4}^2 =7.25 eV², sin² 2 θ_{N4} =0.26), and expected corresponding ICARUS measurement for 3 months of BNB (red).
 - Survival v_{μ} oscillation probability for Neutrino-4 anomaly (black) for the best fit (Δm_{N4}^2 =7.25 eV², sin² 2 θ_{N4} =0.26), and expected corresponding ICARUS measurement for 1 year of NuMI (red).

SBND light detection system

- PMTs:
 - tested at LANL in the Coherent Captain Mills experiment;
 - being packed for shipment to FNAL

PDS module

PMTs being tested at LANL

SiPM cold test

X-ARAPUCA

- X-ARAPUCAs:
 - assembly of the modules ongoing;
 - cold tests in Brazil with different light guides;
 - test stands at FNAL for mass testing of SiPMs and for readout development/test.
- TPB coated reflector foils on the cathode:
 - at FNAL, to be installed when CPA ready

SBND detector assembly

- All TPC components constructed.
- Assembly ongoing at Fermilab in clean room at Dzero.
- Readout electronics tested and ready for installation.

Test of mock APA hanging

Assembly Transport Frame

APA

SBND installation status

- CRT system:
 - Panels constructed
 - Bottom panels installed
 - Beam measurements in pit

Warm outer vessel in the pit

Bottom CRT

BNB measurement with CRT

Top cap _ part 1

- Cryostat/cryogenics:
 - Warm outer vessel installed.
 - Cryostat material at FNAL.
 - Top cap fabrication finalizing at CERN.
 - Cryogenics installation ongoing

Summary and outlook

- The SBN Program at Fermilab is well on its way to:
 - an exciting search for neutrino oscillations over short baseline addressing the sterile neutrino puzzle;
 - make high precision measurements of v-Ar cross sections;
 - develop LAr-TPC technology & expertise in preparation for DUNE.
- **MicroBooNE** is now producing high statistics measurements of v-Ar interactions and is getting closer to start releasing the first results on the low energy excess, based on 6×10^{20} POT.
- Despite the challenges posed by the Covid-19 pandemic:
 - the **Icarus** detector was activated in August 2020 and is now in commissioning phase, expected to be completed early in the Fall 2021;
 - assembly and installation of the **SBND** detector are progressing, with projected activation in 2022.

Sterile neutrino sleuths

01/30/18

| By Tom Barratt and Leah Poffenberger

Meet the detectors of Fermilab's Short-Baseline Neutrino Program, hunting for signs of a possible fourth type of neutrino.

Artwork by Sandbox Studio, Chicago with Corinne Mucha

Oscillation signatures at SBN

SBN can exploit the complementarities between ν_e and ν_μ oscillation signatures.

• $\stackrel{(-)}{\nu_e}$ disappearance

$$P(\stackrel{(-)}{\nu_{e}} \not\rightarrow \stackrel{(-)}{\nu_{e}}) = 1 - \sin^{2}(2\theta_{ee}) \cdot \sin^{2}(\frac{\Delta m_{41}^{2}}{4E_{\nu}}), \ \sin^{2}(2\theta_{ee}) = 4|U_{e4}|^{2} \cdot (1 - |U_{e4}|^{2})$$

• $\stackrel{(-)}{\nu_{\mu}}$ disappearance

$$P(\bar{\nu}_{\mu}^{(-)} \not\rightarrow \bar{\nu}_{\mu}^{(-)}) = 1 - \sin^2(2\theta_{\mu\mu}) \cdot \sin^2(\frac{\Delta m_{41}^2}{4E_{\nu}}), \ \sin^2(2\theta_{\mu\mu}) = 4|U_{\mu4}|^2 \cdot (1 - |U_{\mu4}|^2)$$

• $\stackrel{(-)}{\nu_e}$ appearance in $\stackrel{(-)}{\nu_{\mu}}$ beam

$$P(\nu_{\mu} \not\rightarrow \nu_{e}^{(-)}) = 1 - \sin^{2}(2\theta_{\mu e}) \cdot \sin^{2}(\frac{\Delta m_{41}^{2}}{4E_{\nu}}), \ \sin^{2}(2\theta_{\mu e}) = 4|U_{e4}|^{2} \cdot |U_{\mu 4}|^{2}$$

🔁 Fermilab

2/24/2021

Relation between appearance and disappearance channels: $\stackrel{(-)}{\nu_{\mu}} \rightarrow \stackrel{(-)}{\nu_{e}}$ appearance requires $\stackrel{(-)}{\nu_{\mu}}$ and $\stackrel{(-)}{\nu_{e}}$ disappearance.

Boosting light collection

VIS

Mesh

Mesh

Wavelength-shifting reflector foils (TPB coated) mounted at the cathode

o 4 (50x60 cm) double-sided coated panels per cathode window (16)

- o Total surface area ∼38 m²
- Combination of direct and reflected light
 - Improved total light yield
 - Uniform light collection
 - Lower threshold
- SBND LDS enables new application of light collection in argon: timing, position reconstruction, calorimetry

<u>PMT only</u> 100 photoelectrons per MeV when combining direct and reflect light!

Cathode Plane Assembly

Mesh frames with foils assembled

Fermilab, September 27th 2019

🚰 Fermilab

O. Palamara | SBND

Х

Initial activation of the Icarus trigger system

- Data collected by triggering on the BNB extraction signal in one cryostat used to check the timing/read-out of both TPC and PMTs signals and the timing of the beam gate, a prerequisite for the trigger deployment.
- Anode-to-cathode cosmic μ tracks with unambiguously measured crossing time in the TPC image t_{TPC} found to match the corresponding time of PMT light signal t_{PMT} . Clear ~2 μ s peak in $t_{TPC} - t_{PMT}$ confirming the correct relative TPC - PMT timing.
- \circ Excess of PMT light signal in correspondence with the 1.6 μ S BNB gate observed.

2/24/2021