Baikal-GVD: status and perspectives

Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration NUTEL2021, Fabruary 23, 2021

Baikal-GVD collaboration

10 organisations from 5 countries, ~70 collaboration members

- Institute for Nuclear Research RAS (Moscow)
- Joint Institute for Nuclear Research (Dubna)
- Irkutsk State University (Irkutsk)
- Skobeltsyn Institute for Nuclear Physics MSU (Moscow)
- Nizhny Novgorod State Technical University (Nizhny Novgorod)
- Saint-Petersburg State Marine Technical University (Saint-Petersburg)
- Institute of Experimental and Applied Physics, Czech Technical University (Prague, Czech Republic)
- EvoLogics (Berlin, Germany)
- Comenius University (Bratislava, Slovakia)
- Krakow Institue for Nuclear Research (Krakow, Poland)

Baikal-GVD site

Railway stop "106 km" of Circum-Baikal railway

Telescope is located 3.6 km away from shore

Constant lake depth: •1366 - 1367 [m]

Stable ice cover for 6-8 weeks in February - April •Detector deployment •Maintenance

- Absorption length: ~ 22-24 m
- Scattering length: $L_s \sim 30-50 \text{ m}$ $L_{eff} = L_s /(1 - \langle \cos\theta \rangle) \sim 300-500 \text{ m}$
- Strongly anisotropic phase function: <cosθ> ~ 0.9

• Moderately low background in fresh water:

15 – 40 kHz (R7081HQE) absence of high luminosity bursts from biology and K⁴⁰ background.

Gigaton Volume Detector at Lake Baikal

Baikal-GVD (Gigaton Volume Detector) is a cubic-kilometer scale underwater neutrino detector being constructed in Lake Baikal

Baikal-GVD optical module

Baikal-GVD detector layout

CLUSTER: 8 strings

Cluster

Consists of 8 strings
60 m step between strings
Acts as independent detection unit
Central electronics (power, trigger, data transmission) located at 30 m depth
Hardware trigger:
4 5 p.o. + 1 5 p.o. op adjacent OMs in 10

4.5 p.e. + 1.5 p.e. on adjacent OMs in 100 ns window

String

- •36 OMs, depths from 750 m to 1275 m
- •15 m step between OMs
- •All OMs look downward
- Acoustic and LED calibration devices
- Anchored at the lake bottom

STRING

Section: 12 OMs

Ε

525

Calibration devices

LED beacons for time calibration

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Cluster 6 Cluster 7

Tech. strings

with 1 or 2 lasers

on each string

Laser 532 nm, 0.37 mJ, 1 ns

Baikal-GVD 2020

Hydrophones for acoustic positioning (4 per string, ~ 20 cm precision)

Acoustic positioning system

1. OM coordinates are acquired via an acoustic positioning system.

2. It consists of a network of acoustic modems (AMs) installed along GVD strings

- 3. 4 AMs per string in a standard configuration.
- 4. AM coordinates are regularly reconstructed via acoustic trilateration.
- 5. OM coordinates are obtained by interpolating AM coordinates.
- 6. OM coordinates error < 0.2m, as estimated via a calibration AM.
- 7. OM drift can reach tens of meters, depends on season and elevation.

Beacon drift, July 1st - July 5th 2019 Cluster 1, String 2

Winter expedition 2020

Despite harsh ice conditions this winter

two new clusters were deployed (576 OMs)

Baikal-GVD construction status and schedule

Deployment schedule

300 m step between clusters

Effective volume 2020: 0.35 km³

Detector response

Up-going

muon

Preliminary resalts

- > Muons detection mode: atmospheric neutrinos
- Cascades detection mode: HE cascades
- Multimessenger studies

Track analysis

event rate before quality cuts (dominated by muon bundles)

Fair agreement with MC predictions Neutrino selection works as expected

A likelihood-based reconstruction is in development

Fit track with quality function

 $Q = \chi^2(t) + f(q,r)$

Neutrino selection: •cut on zenith angle •cut on fit quality

Muon neutrino : single-cluster analysis

- Data taken between Apr 1 and Jun 30, 2019
- Live time: 323 days (single-cluster equivalent live time)

Fair agreement with MC prediction for atmospheric neutrino

Angular resolution ~ 1° or better (single cluster)

Multi-cluster analysis is in preparation

Muon neutrino candidates

Cascades detection with GVD Cluster

Neutrino Effective Area

Directional resolution for cascades: ~ 2°- 4° - median value of mismatch angles

7 GVD Clusters N _{hit} > 19 OMs

Energy spectrum of astrophysical neutrinos measured by IceCube:

4.1.10⁻⁶ E^{-2.46} GeV⁻¹ cm⁻² s⁻¹ sr ⁻¹

Expected number of detected events in 7 GVD Clusters from astrophysical neutrinos for 1 yr. observation

Event selection criteria (E_{sh} >100 TeV, N_{hit} >19):

~0.6 events/yr with 1 cluster

~ 3-4 events/yr with 7 clusters

Data sample

T = 3714 days (10.1 years) of one Cluster operation (2018, 2019, 2020)

After reconstruction and all cuts applying, 9357 events have been selected with N_{hit} > 9 & E > 10 TeV

Trigger conditions for different studies MM studies: $N_{hit} > 7$ Upward going neutrinos: $N_{hit} > 10\& \theta > 90^{\circ}$ HE astrophys. neutrinos: $N_{hit} > 19\&E > 100 \text{ TeV}$

Hits separation for >20 ns time difference

High energy cascades (data)

Energy distribution

Data from 2018 - 2020 , exposition: **3714 days**

12 events with E > 100 TeV and N_{hit} >19: 5-6 events – cascade events 7-6 events – cascade events with muon pattern

3 upgoing cascades: E \approx 91 TeV and E \approx 74 TeV and 22 TeV

Contained event

The first clear cascade event from the interaction of an upward moving electron- or tau-neutrino at the 100 TeV

Preliminary

Preliminary

Sky map, 2° circle around event direction

First PeV_scale cascade!

Preliminary

Reconstructed energy E = 955 TeV (\pm 20%); distance from central string r = 91 m; zenith angle = 61°

Upper limits on fluence of neutrinos associated with GW170817

No neutrino events associated with GW170817 have been observed Using cascade mode within \pm 500 sec window and 14 days after the neutron star merger.

Assuming E⁻² spectral behavior and equal fluence in all flavors upper limits at 90% c.l. have been derived on the neutrino fluence from GW170817 for each energy decade.

ANTARES (TAToO) μ_{\uparrow} since Dec 2018 <E> 7 TeV

ICECUBE (GCN) μ_{\uparrow} since Sept 2020 E> 100 TeV

search for {time, δ,α } correlations in single cluster

in cascade mode within 4.5° half-open cone towards sources over 4π -sky

in track mode: within 1.5° half-open cone towards sources in down hemisphere

Between Dec 2018 and Jan 2020, a total of 43 alerts have been analysed; 15 alerts came in 2020.

Following up alarm of trigger, we look for events on each cluster in time windows ± 500 sec, ± 1 hour and ± 1 day around alerts inside ^{1/2} cones;

in cascade mode a full data sample of season 2018-2019 has been used for background estimates;

in tracks the first neutrino sample with 57 events in 2019 has been tested, while *softer quality cuts for muons selection were considering and under investigation now*.

No prompt coincidence in time and direction was found with ANTARES trigger.

Limits on energy fluence

"High energy neutrino follow-up with Baikal-GVD", Avrorin A.D. et al. CR&MM_2020/PosterCRMM_ICGVD_ALERTS_VDik.pdf

Astronomy Letters,

issue 2, 2021, in press

Alert	NN GCN	rank 	E _∨ ^{T∋B} TeV	alt _{градусь} deg.	N _{obs} $ \pm^{12} = \pm 12h$ $\pm^{12}h$	N _{bkg} ^{юв в сутки} Г	p-val	Fluence ^{U.L.} ¤L TэB см ⁻² TeV cm ⁻²	9 IC alerts in Sept-Oct 2020
IC200911A	28411	Bronze	110.79	23.2 ^(o)	-	0.33	-	$1.43 x 10^{-3}$	-
IC200916A	. 28433	Bronze	110.48	30.3 ^(°)	-	0.29	-	$1.12 \mathrm{x} 10^{-3}$	Spectrum E ⁻²
IC200921A	28468	Bronze	117.17	-10.6(0)	-	0.36	-	$1.13 x 10^{-3}$	1 TeV—10 PeV
IC200926A	. 28504	Gold	670.50	-28.2(0)	-	0.19	-	$1.14 x 10^{-3}$	FC limits
IC200926B	28509	Bronze	121.42	22.3 ^(°)	1	0.39	0.32	$2.5 \mathrm{x} 10^{-3}$	Results:
IC200929A	28532	Gold	182.89	41.1 ⁽⁰⁾	1	0.35	0.29	$2.5 \mathrm{x} 10^{-3}$	p-val~ 0.2÷0.4 (~1σ)
IC201007A	28575	Gold	682.65	-32.5(0)	-	0.25	-	$1.12 \text{x} 10^{-3}$	Fluence U.L. at 90% c.l. $\sim 1 \div 2$ GeV cm ⁻²
IC201014A	28616	Bronze	146.93	29.5(°)	1	0.44	0.36	$2.44 \text{x} 10^{-3}$	
IC201021A	. 28715	Bronze	105.27	47.1 ⁽⁰⁾	-	0.37	-	$1.37 \mathrm{x} 10^{-3}$	

Fiber optic data acquisition system for GVD

Development of fiber-optic DAQ is focused on GVD step 2.

The goal of upgrading the DAQ is to reduce the event registration threshold by increasing the data transfer speed and implementing a smart trigger system.

Basic principles:

- "One fiber per one string".
- "Common clock" for all sections of the cluster
- "Multi-trigger" operation mode

To meet these requirements:

- CWDM optical multiplexers are applied (up to 9 channels per one fiber)
- . ADC/Master board was modernized on the basis of FPGA Xilinx Zynq. (extending the real-time processing capabilities of the section data).

Fiber optic experimental string

Experimental string is intended to in-situ tests of underwater fiber optic on the basis of CWDM

Basic element of the optical communication is CWDM multiplexor (MUX) that provided up to 9 physical line using different wavelengths.

Exp. string comprises:

- New Master/ADC board (FPGA Zynq)
- 12 optical modules.

Mode of operation:

- Basic trigger: coincidences of two neighboring OMs;
- Monopol trigger.
- ADC and Sync data are transmitted via one optical fiber to the Shore Center

GVD 2020 and extention

Conclusion

➢ Baikal-GVD is now the largest neutrino telescope in the Northern Hemisphere: 0.35 km³ and growing

➢ Modular structure of GVD design allows a search for HE neutrinos and multimessenger studies at the early phases of array construction.

➢Observations of atmospheric neutrinos by Baikal-GVD agree with expectations; first astrophysics neutrino candidate events have been selected Deployment rate – 2 clusters/year

33

GVD (1 km³) in 2026