Super-Kamiokande with Gd

Michael Smy, UC Irvine XIX International Workshop on Neutrino Telescopes February 22nd, 2021 **25 Years of Neutrino- and Astrophysics** with Super-Kamiokande! **97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 15 16 17 18 19** Accident SK-II 5,182 1 7 Market SK-II 5,182 1 7 MTs full SK-III SK SK Super-K-I Super-Kamiokande-IV V Gd repair earth-K2K-I T₂K K2K-II quake

- 1998: discovery of atmospheric neutrino flavor transformation and neutrino mass
- ✤ 2000: solar mixing angle is large
- 2001: discovery of solar neutrino flavor transformation with SNO; uniquely measure oscillation parameters (with all solar data)
- * 2004: discovery of atmospheric ν oscillation; confirmation from K2K with ν_{μ} beam
- * 2011: first indication of positive θ_{13} from T2K with v_{μ} neutrino beam
- * 2012: first evidence for τ appearance
- 2013: first direct indication of matter effects on v oscillations (solar v day/night effect)
- * 2013: first observation of $v_{\mu} \rightarrow v_{e}$ appearance
- * 2017: first hint of CP violation in v oscillations $_2$

50,000 ton water Cherenkov detector

ID: 32,000 tons (FV 22,500 tons);
 11,129 PMTs (SK-I 11,146 PMTs)

OD: 18,000 tons; 1,885 PMTs layout by Y. Suzuki, ICRR (Michael Smy, UC Irvine)

This Succes is owed to the 2018 Preparation of the SK Tank

Search for Distant Supernova Neutrinos

- * "distant": farther than Andromeda (M31, NGC224), z≤1
 (to be above reactor spectrum) with «1 exp. interactions
- Constant, diffuse (isotropic positrons from IBD), and low (~few/year) signal rate between 10 and 30 MeV
- delayed coincidence of neutron capture is import handle to distinguish from radioactive and neutrino backgrounds

 ✤ flux=cosmic star formation history ⊗ initial mass function ⊗ supernova fraction ⊗ neutrinos/supernova

Model Predictions/Present Limits

Signal and Sidebands in SK-IV w/o Gd

- * one and only one 2.2 MeV γ candidate, $\epsilon_{tag} = O(0.1)$
- reconstruct Cherenkov angle:
 - signal region: a positron Cherenkov cone opening angle reconstructs as 38°-50°
 - Iow energy muons/pions: smaller opening angle
 - large angles: overlay of multiple Cherenkov cones (from γ's) in atmospheric v NC interactions

reconstructed cone

cones

SK-IV Data, Signal and Background

detailed results in the presentation from
Alberto Giampaolo last week:
→ Fri 19th, 12:15 Parallel Room 2

Φ _v [cm ⁻² sec ⁻¹] (for E _v >17.3 MeV) Best fit			90% CL limit					Pred.
Model	SK4	All	SK1	SK2	SK3	SK4	All	
Totani+96 Constant	1.9 ^{+1.3} -1.1	$1.4 \ ^{+0.8}_{-0.8}$	2.4	6.8	7.9	3.7	2.6	4.67
Malaney97 CGI	1.8 ^{+1.3} -1.8	$1.4^{+0.8}_{-0.8}$	2.3	7.2	7.7	3.7	2.6	0.26
Hartmann+97 CE	$1.9 \ ^{+1.3}_{-1.2}$	$1.4^{+0.8}_{-0.8}$	2.4	7.0	7.8	3.7	2.6	0.63
Kaplinghat+00 HMA	$1.8 \ ^{+1.3}_{-1.2}$	$1.4^{+0.8}_{-0.8}$	2.3	7.1	7.8	3.7	2.6	3.00
Ando+03 (updated 05)	$1.9 \ ^{+1.3}_{-1.2}$	$1.5^{+0.9}_{-0.8}$	2.5	7.1	7.9	3.8	2.7	1.74
Lunardini09 Failed SN	$1.9 \ ^{+1.3}_{-1.2}$	$1.5 \ ^{+0.9}_{-0.8}$	2.5	7.5	8.1	3.8	2.7	0.72
Horiuchi+09 6 MeV, max	1.9 ^{+1.3} -1.2	$1.5 \ ^{+0.9}_{-0.9}$	2.5	6.9	8.0	3.8	2.7	1.94
Galais+10 (NH)	1.9 ^{+1.3} -1.2	$1.4 \stackrel{+0.8}{_{-0.8}}$	2.3	7.1	7.8	3.7	2.6	1.49
Nakazato+15 (min, NH)	$1.8 \stackrel{+1.3}{-1.2}$	$1.4 \stackrel{+0.9}{_{-0.8}}$	2.4	7.3	7.8	3.7	2.7	0.19
Nakazato+15 (max, IH)	$1.9 \ ^{+1.3}_{-1.2}$	$1.5 \ ^{+0.9}_{-0.9}$	2.5	7.1	8.0	3.8	2.7	0.53
Horiuchi+18 $\xi_{2.5} = 0.1$	$1.9 \ ^{+1.3}_{-1.2}$	$1.5 \ ^{+0.9}_{-0.9}$	2.5	6.9	8.1	3.8	2.7	1.23
Horiuchi+18 $\xi_{2.5} = 0.5$	$1.7 \ ^{+1.3}_{-1.2}$	$1.4 \ ^{+0.8}_{-0.8}$	2.3	7.6	7.5	3.6	2.5	0.55
Kresse+20 ⁹ (High, NH)	1.9 ^{+1.3} -1.2	$1.5 \ ^{+0.9}_{-0.8}$	2.4	7.2	7.9	3.7	2.7	1.57

eventually: 0.1% Gd concentration, ~90% neutron captures on Gd

SK-Gd @0.1% (10 yrs) DSNB spectral fit sensitivity

 $\varepsilon_{tag} = O($

1.0

0.0

Kresse+20

LMA

Nakazato+15

SK-Gd @0.1% (10 yrs) DSNB spectral fit sensitivity

Galactic Supernova Neutrinos

~ 30 µs

- * dominant channel: IBD of $\overline{\nu_e}$'s on protons $\overline{\nu_e}$
- * sub-dominant channel: elastic scattering $\nu_x + e^- \longrightarrow \nu_x + e^-$ (dominated by ν_e 's); recoil electrons follow neutrino direction
- with Gd: separate those two channels, improve
 sensitivity to late burst

improve ES signal and flavor decomposition of galactic SN v burst

improve angular resolution by factor of two!

Michael Smy, UC Irvine

Michael Smy, UC Irvine

Atmospheric (and Cosmic) Neutrinos

O(GeV) neutrinos measure neutrino oscillation parameters from zenith angle and energy distributions from many samples

> 0.7 0.6

0.5 0.4

0.3

0.2 0.1

- combined analysis using * 364.8kton years
- sensitive to matter effects
- * neutron-tagging to distinguish ν from $\overline{\nu}$: ~25% tagging eff.
- new BDT based event selection for multi-track events

Atmospheric Neutrinos

• oscillation parameters/mass ordering: prefer first θ_{23} octant, $\delta_{CP} \sim 3\pi/2$ and disfavor inverted ordering at 71.4-90.3% C.L.

Atmospheric Neutrinos: Search for Non-Standard Interactions (NSI)

Up-µ Non-showering

e-τ sector NSI:

- (standard) oscillation parameters fixed to SK best fit point
- set all $\varepsilon_{\mu\alpha}=0$ **
- excess in upward-going v_e's≥5 GeV
- excess in upward-----going v_{μ} 's 20-80 GeV

 ϵ_{tt}

Search for Dark Matter Annihilation at the Galactic Center and Halo

- published last year in PRD 102, 072002
 - Assume WIMP pair annihilation into a single channel with 100% BR: $\chi\chi \rightarrow b\overline{b}, W^+W^-, \mu^+\mu^-, \nu\overline{\nu}$ to predict v energy spectra
- search for (directional) signal on top of atmospheric neutrino background

Indirect search for dark matter from the Galactic Center and halo with the Super-Kamiokande detector

PHYSICAL REVIEW D 102, 072002 (2020)

Search for Dark Matter Annihilation at the Galactic Center and Halo

Super-Kamiokande Limits

Michael Smy, UC Irvine

Looking for Neutrinos Related to Gravitational Wave Events

last October, LIGO-Virgo collaborations released catalogue of confirmed Gravitational Wave events (GWTC-2) look in both the SuperKamiokande MeV and GeV scale samples within 500 sec of the GW time.

 \implies no significant excess observed (with respect to the expected background)

Summary and Outlook

 Super-K data offers 25 years of exciting neutrino physics from MeV's to TeV's, but naturally statistical and systematic improvements have slowed down in recent years

 with the addition of Gd₂(SO₄)₃ we start a new era allowing us to use new handles enhancing previous analyses and starting new ones (e.g. reactor neutrinos)

* expect us to gradually increase the Gd loading in the next years (reach 0.03% in May 2022) to fully access these new physics opportunities

Atm. v Samples w/o Neutron Tag

Neutron Tagged Atm. v Samples

