The NOvA neutrino experiment and its astrophysics program

Matthew Strait, for the NOvA collaboration

University of Minnesota, Twin Cities

February 22, 2021

Outline

- Overview of NuMI beam and NOvA detectors
- Neutrino oscillation results (rapidly)
 - See more detail Wednesday 17:30: talk by Zoya Vallari
- Astrophysics

NOvA Far Detector

Design

Design Overview

• Fermilab's NuMI beam

- Off-axis \rightarrow narrow spectrum at 2 GeV
- 1st oscillation maximum at 810 km

- Near detector
 - Observe unoscillated beam composition, energy
- Far detector observes: $\nu_{\mu} \rightarrow \nu_{\mu} \ \nu_{\mu} \rightarrow \nu_{e}$

Design

Detector Technology

- Two functionally identical detectors
- Segmented plastic and scintillator tracking calorimeter
- 63% active
- APD readout
- Near detector is 300 t. underground. 1 km from NuMI target
- Far detector is 14 kt. on the surface

Design

Event Topologies

- Optimized for EM showers
- \sim 6 samples per X_0
- Convolutional neural net classifier selects signal events

Far Detector Data: 2013–2020 — ν_{μ} disappearance

- \bullet Neutrino mode: 13.6×10^{20} POT
- 211 events selected
- Background: 9.2 events

- Anti-neutrino mode: 12.5×10^{20} POT
- 105 events selected
- Background: 2.1 events

$\nu_{\rm e}$ Analysis

Far Detector Data — $u_{\rm e}$ appearance

- \bullet 82 events in ν mode
- Background: 26.8 events
 - 1.0 wrong-sign (appearing $ar{
 u}_{e}$)
 - 22.7 other beam (intrinsic $\nu_{\rm e}, \nu_{\mu}, \nu_{\tau},$ neutral current)
 - 3.1 cosmic

- 33 events in $\bar{\nu}$ mode
- Background: 14.0 events
 - 2.3 wrong-sign
 - 10.2 other beam
 - 1.6 cosmic
- ullet > 4 σ electron anti-neutrino appearance

Combined Appearance/Disappearance Results — θ_{23} , Δm^2_{32}

Results

Combined

Combined Appearance/Disappearance Results — Mass ordering, θ_{23} , δ_{CP}

- All values of δ allowed
- Prefer normal hierarchy by 1.0σ
- Prefer **upper octant** by 1.2σ
- Exclude $\delta = \pi/2$ in IH at $> 3\sigma$

Astrophysics

NOvA Far Detector

- As a large fine-grained detector, the Far Detector supports a variety of astrophysical analyses
 - Some benefit from the FD's location on the surface
 - Some can be done in spite of it
 - Cosmic muon rate: 150 kHz
- Near Detector: 100 m underground much smaller, but much quieter
 - 36 Hz of cosmics

Triggers for Astrophysics

- All data continuously digitized
- Buffered for ${\sim}20$ minutes while trigger decisions are made
- Beam triggers
- Other external triggers
- Data-driven triggers

- Triggers request anywhere from 50 μ s (e.g. cosmic showers) to 45 seconds (supernova)
- No dead time: triggers do not interfere with each other

Cosmic ray multi-muon seasonal effect at the Near Detector

- Well-known: underground cosmic rate higher in summer
- Less dense summer atmosphere \rightarrow more π decay before interacting
- But we observe *more* multi- μ in winter
 - Phys.Rev.D 99 (2019) 12, 122004
- Effect larger with higher multiplicity
- No clear explanation

Astrophysics Cos

Cosmic Rays

Seasonal multi-muon effect in the Far Detector

- $\bullet\,$ Study sample of muon showers with multiplicity $> 15\,$
- Also observe winter maximum
- Simulation work underway to find explanation of effects in both Near and Far

2016-01 2016-06 2016-11 2017-05 2017-09 2018-03 2018-07

Other Cosmic Ray Studies

- Measurement of low-energy east-west asymmetry
 - Caused by Earth's B field
- Short-term weather effects
 - Known, but understudied
- Solar flare correlation?
 - Claimed by L3+C
- Measure muon rates above 100 TeV
 - Resolve Baksan/IceCube discrepancy?

February 22, 2021

Astrophysics

Cosmic Rays

Discovery of ICARUS

Monopoles

Magnetic Monopole Search

- Search for a monopole component of cosmic rays in the Far Detector
- Large surface area catch rare events
- On surface sensitive to lighter monopoles that don't reach far underground ۵
- Signals:
 - If $\beta \gtrsim 10^{-2}$: highly ionizing, like a charge of 68.5e
 - If $\beta \leq 10^{-2}$: slow track
- NOvA sensitive down to $\beta \approx 10^{-4}$

Magnetic Monopole Search Results

- Slow monopole search:
 - 95-day exposure: *Phys.Rev.D* 103 (2021) 1, 012007
 - $\sim\!\!2000$ days of exposure (with different detector conditions) to be analyzed
- Fast monopole search: in progress

- Set mass limits in flux/speed space: NOvA has best limits in yellow region
- Background-free: limits scale linearly with exposure
- Expect to reach $4\times 10^{-16}\,{\rm cm}^{-2}{\rm s}^{-1}{\rm sr}^{-1}$ for $3\times 10^{-4}<\beta<0.8$
 - $\bullet~\approx$ MACRO limits across most of the plot, but extending to lower masses

Supernova neutrinos

- Core collapse supernovae release 99% of their energy in neutrinos
- $\bullet~\sim 10\text{--}60\,\text{MeV}$
- Burst lasting 10s of seconds
- Only one SN observed in neutrinos: 1987a

NOvA is mostly sensitive to \$\bar{\nu}_e\$:

At Galactic center:		
	Far	Near
$ar{ u}_e + p ightarrow e^+ + n$	2163	46
$\nu_x + {}^{12}C \rightarrow \nu_x + {}^{12}C^*$	393	9
$ u_e$ + $^{12}\mathrm{C} ightarrow e^-$ + $^{12}\mathrm{N}$	137	3
$ar{ u}_e$ + $^{12}\mathrm{C} ightarrow e^+$ + $^{12}\mathrm{B}$	139	3
$ u_x + e^- \rightarrow \nu_x + e^- $	199	4

A. C. I. ...

- Primary signal: 1–7 hits from positron
 - Neutron capture on ³⁵Cl marginally visible
- Largest operating carbon-based detector
- Complementary to water/lead/argon detectors for constraining flavor content

Multimessenger Astronomy

Far Detector: 5 ms cosmic data + SN simulation

Supernova Trigger

- Remove muon tracks, activity near tracks
- Filter by supernova candidate cluster energy

- Trigger covers half the galaxy
- SNEWS alerts cover the rest
- Plan to also send triggers to SNEWS soon
- JCAP 10 (2020) 014

Matthew Strait (UMN)

Can we read out Betelgeuse? This is 5 ms of everyday data:

Simulated peak flux from Betelgeuse, 5 ms, cosmic tracks removed:

Astrophysics

Multimessenger Astronomy

Multimessenger search with gravitational waves

- NOvA receives triggers from LIGO/Virgo
- Save 45 s of continuous data around each gravitational wave candidate
- Same as for a supernova candidate

Matthew Strait (UMN)

General multimessenger search

- Any unusual activity coincident with gravitational waves?
- Looked between MeV, 100s of TeV
- None found
- PRD 101, **11** 112006

- $\bullet\,$ Cosmic event with ~ 2000 muons
- Not coincident with a gravitational wave event

Search for supernova-like neutrinos coincident with gravitational waves

90% limits: 9.6, 27 M_{\odot} supernova Red: median case for triggered FD

- Most likely signal for NOvA would be supernova neutrinos
- New multivariate analysis improves cosmic rejection
- Reduces FD background from 450 Hz to 5 Hz

- Searched using 75 LIGO/Virgo events
- No excesses found

Matthew Strait (UMN)

February 22, 2021

25 / 27

Conclusions

Conclusions

Neutrino oscillations

- Appearance of $ar{
 u}_{
 m e}$ in a $ar{
 u}_{\mu}$ beam at $>4\sigma$
- Inverted hierarchy, $\delta \approx \pi/2$ excluded at $> 3\sigma$
- See talk Wednesday 17:30 for more details

Broad astrophysics program

- Made possible by trigger system, complementary Near and Far Detectors
- More results and new analyses to come

