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A Dbit of context behind the two

topics...

We would like to invite you to give one of these Challenge talks.
The argument(s) would be "New technologies for measuring

neutrino masses" together with "Neutrino coherent scattering”.

-- Mauro Mezzetto

Yes, | am happy to partake in the Challenge talks!
One question of clarification: are you asking me to
give a talk on both of these topics [...]?

-- Me

Yes — Mauro

Ok <gulp>
— Me



Luckily, there are some similarities...
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ABSTRACT

If there is a weak neutral current, then the elastic scattering

process v+ A - v+ A should have a sharp coherent forward peak

just as e+t A ~e + A

does. Experiments to observe this peak can
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Neutrino Coherent
Scattering
(1974)



Both measurements access key neutrino properties...

v Mass Scale

3
mj = _|Uail*m;
i=1

Incoherent sum of
neutrino mass eigenstates.

Relates directly to the
energy-momentum
dispersion of neutrinos.




Both measurements access key neutrino properties...
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and in principle, the measurements are simple.
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and in principle, the measurements are simple.
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and in principle, the measurements are simple.

Coherent Elastic Neutrino
Nucleus Scattering

V

Nucleus

«
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Measure the kinetic energy of the outgoing recoil.

Cross-section proportional to (roughly) the square of the
number of neutrons.

\ 4

Large cross-section increase.




and also connect to other

branches of physics.

Ill

Mainz & Troitsk (95% C.L.)
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cosmology

Neutrino mass connects
back to cosmological
observations.

Y=Y

Limits on the neutrino mass scale
from cosmology are affected by
model extensions (such as
additional parameters) or new
physics (neutrino self-interaction
or dark matter interactions).
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and also connect to other

branches of physics.
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Also gives insight into
supernova physics, nuclear
structure, solar physics and
much more.

The coherent process likewise
provides allows insight into new
physics at small momentum
exchange.
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A World-wide effort is already underway for direct

measurements.




Electron transfers all of its energy to
the absorbing medium.

Calorimetric

(Cryogenic Bolometers)

Electromagnetic filtering of electrons of
selected energy.

Electromagnetic Collimation
(MAC-E Filter)

Use photon spontaneous emission from
electron in magnetic field.

Frequency-Based
(Cyclotron Radiation Emission Spectroscopy)




ECHo & HOLMES

Electron transfers all of its energy to
the absorbing medium.

Calorimetric
(Cryogenic Bolometers)

Electromagnetic filtering of electrons of
selected energy.

Electromagnetic Collimation

(MAC-E Filter)

Project 8

Use photon spontaneous emission from

electron in magnetic field.

Frequency-Based
(Cyclotron Radiation Emission Spectroscopy)




A World-wide effort is also underway for coherent

neutrino scattering, too.




izIP (Ge)
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MINER, Ricochet, NuCLEUS

lonization Detectors
(Germanium & Si-CCD)

Large mass, keV scale

Cryogenic Bolometers

Smaller detectors, sub-keV scale

particle discrimination via
ionization, photon tagging



Count rate (cps)

Residuals (o)

We have
made
strides in last

few years...

t KATRIN data with 1 o error bars x 50 |
’ — Fit result
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2 million events, 780 hours of data.

Excellent goodness-of-fit: p-value=0.56.



Res. counts / 2 PE

Res. counts / 500 ns
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Process finally measured at
the spallation neutron

source by the COHERENT
collaboration.

Now measured for Cs and
Ar targets.
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but both programs have ambitious goals.

v Mass

Resolve whether the neutrino
mass scale is quasi-degenerate
in the next few years.

And eventually push down to
the inverted ordering scale.
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Does the technology being pursued get us there?




S0, both these measurements have a

common wish list...

Sufficient statistics

Background Reduction

Superior Energy Resolution



Sufficient

Common challenges:
Statistics
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Only a tiny fraction of
the spectrum yields
information about the
neutrino mass.

Large activities are
required in order to
probe the spectrum at
the few eV level.



Sufficient
Common challenges:

Statistics

CLCYNS Cross Secton Prediction
Pl Flux averaged =radiction with Uncentainty

In the case OF COherent : : '.'.' . ol - B ) COHERENT (Analysis 2)
. SR ). + COHERENT (Analysis E)

scattering, coherence

helps a lot.

That said, the cross-
sections are still small.
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Kopeikin (2012)
— Lhuillier-Mueller (2011)

Two work-arounds:
operate at higher
energies (COHERENT),
or with large fluxes
(nuclear reactors).

Neutrino energy [MeV]




Common challenges:

Overcoming

Backgrounds

Direct Measurements

t KATRIN data with 1 o error bars x 50 |

CENNS Detectors

— Fit result

—_
o

Count rate (cps)
o

Number of counts [evts/kel

—

TGaVied, eR#10 M em?

. . .03 e 5 a1
LoV e A5 < 1) U

0 e v ——— ) - — =
xolded WIN S made eV L | 7 S v

Dtandard Spectra

iy

Ryberg atoms

Radon decays

.
% Fnere

]t\

B ac kg round

Ilwa”"

Reduction of backgrounds is crucial for experiments of both sorts, though the

causes for these backgrounds depends on the specific technology deployed.




Overcoming

Common challenges:
Backgrounds

Direct Measurements CENNS Detectors

Magnetic field Magnetic '. Active Veto Electron/recoll
optimization shielding from ‘ Passive event
Radon removal surfaces | shielding discrimination

Different mitigation strategies are used which also depend on the

technology that is deployed.




Superior energy

Common challenges:
resolution

Direct Measurements

» 32-keV y energy: (32153.6 + 2.4) eV
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For direct measurements, energy resolution is needed to extract

the spectral shape near the endpoint.

Order few eV resolution now achieved by major efforts.




Superior energy

Common challenges:
resolution

CENNS Measurements
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For CENNS measurements, energy resolution is needed to move

the energy threshold for recoils as low as possible.




Sufficient statistics
Background Reduction

Superior Energy Resolution

In certain cases, experiments in both categories implement very

similar technology to achieve their goals.
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Sufficient statistics

Background Reduction

Superior Energy Resolution

In certain cases, experiments in both categories implement very

similar technology to achieve their goals.

Resonator chip array

uMux Schematic (Llncoln Laboratorles)
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e.g. Multiplexing of signals to increase target mass



Sufficient statistics
Background Reduction

Superior Energy Resolution

In certain cases, experiments in both categories implement very

similar technology to achieve their goals.

(over 2000 Josephson junctions)
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e.g. Operating at the quantum noise limit for microwave detection



Much of these advances are due to
great advances in superconducting

technology.

High quality production of JJ

junctions, superconducting leads.

-~ s WY ; Driven by strong recent
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| development for superconducting
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circuits for quantum computing.

However, unique challenges still
remain for using these new

technologies for neutrino physics:




Do these technology

scale%

Can they operate in

harsh environments?

What backgrounds
lurk in this new

space?



But half the fun is
the challenge.

“We choose to go to the Moon. We choose to go to the Moon in this
decade and do the other things, not because they are easy, but because

they are hard.”



Thank you for

your attention.
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Backup Slides

(In case people ask questions)



Modern Calorimetric Experiments
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Micro calorimeters which are sensitive to changes in temperature

(energy deposition).

Contain the full decay energy.
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(only electrons with enough energy can overcome potential barrier)
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Project 8 - Event 0
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® Source transparent to

microwave radiation

B field ® No e- transport from
Tm——
source to detector

® leverages precision
inherent in frequency

Frequency Approach techniques
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KATRIN Outlook

KATRIN continues to collect data (Runs 2 & 3 already obtained).
A 1000 day data set is expected to reach design goal.

Target Sensitivity:

Comprehensive campaign to reduce and mitigate backgrounds, 200 meV (90% C |_)

including radon and Rydberg events.

Better measurement/control of plasma instabilities in source.

Assessment of
plasma effects

Increased statistics Background mitigation




T+T Bodine, Parno and Robertson,
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Transition to an
Atomic Source

(Phase 1)

f.q Spin-flip frequencies

The endpoint for T2 is higher than for
atomic tritium. Thus, any atomic
tritium experiment must be extremely

pure (T2 / T< 1073). _: wpna D2y O 0.6 0.8

Magnetic field (T)

Relative energy in frequency units (GHz)

At low densities, recombination occurs
mainly on surfaces. Thus a magnetic
trap is necessary to prevent
recombination. Can utilize magnetic
moment of atomic tritium.

AE =—ji-B

loffe Magnetic
loffe traps and Halbach arrays can Trap
have large fields near surfaces, with a
large uniform region in the center

suitable for CRES.

Solution: A large volume
magnetic trap for T atoms




Toward an Inverted Ordering Experiment

Atoms
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~ 0.03 K Tritium Atoms
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o \B=1T
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Ultimate atomic tritium experiment combines R&D from Phase I
into large RF array tritium trap.
— Conversion from molecular to atomic.
— Demonstrate transport, cooling and trapping of tritium.
— Detection via CRES antenna array

Current Project 8 R&D effort (Phase Ill) focused on developing
these technologies.

Pacch antenna
amray for digea
beamforming
and position
reconstruction

Target Mass
Sensitivity

mg < 40 meV




