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Einstein’s Theory Contains Gravitational Waves

A necessary consequence of
Special Relativity with its finite
speed for information transfer

Gravitational waves come from
the acceleration of masses and
propagate away from their T
sources as a space-time graV|tat|onaI radlation

warpage at the speed of light binary inspiral
of

compact objects



Astrophysical Sources
ignatures

ompact binary inspiral: “chirps”
— NS-NS waveforms are well described
— BH-BH need better waveforms

— search technique: matched templates

e  Supernovae / GRBs: “bursts”
— burst signals in coincidence with signals in ’
electromagnetic radiation O
— prompt alarm (~ one hour) with neutrino detectors - .
e Pulsars in our galaxy: “periodic” I
— search for observed neutron stars (frequency,
doppler shift)
— all sky search (computing challenge)
— r-modes

e Cosmological Signal “stochastic background”
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Einstein’s Theory of Gravitation
Gravitational Waves

 Using Minkowski metric, the information about space-
time curvature is contained in the metric as an added
term, h . In the weak field limit, the equation can be
described with linear equations. If the choice of gauge
Is the transverse traceless gauge the formulation
becomes a familiar wave equation

* The strain h  takes the form of a plane wave
propagating at the speed of light (c).

* Since gravity is spin 2, the waves have two
components, but rotated by 459 instead of 90° h =h (t —7/ C) +h (t —7/ C)
from each other. il - X




Gravitational Waves

Ripples of spacetime that stretch and
compress spacetime itself

The amplitude of the wave is h = 102!

Change the distance between masses
that are free to move by AL=h x L

Spacetime is “stiff” so changes in
distance are very small

AL=hxL=10*"x1m=10"%'m



Suspended Mass Interferometry
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LIGO Sites
Pro;ect Approved 1994

Livingston
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‘Direct’ Detection of Gravitational Waves
LIGO Interferometers
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Measuring the parameters

Orbits decay due to emission of gravitational waves
— Leading order determined by “chirp mass”

(mymy)®® [ 5

M=

3/5
Y _8/3 p—11/3 f

96

— Next orders allow for measurement of mass ratio and spins
— We directly measure the red-shifted masses (1+z) m
— Amplitude inversely proportional to luminosity distance

Orbital precession occurs when spins are misaligned with orbital
angular momentum — no evidence for precession.

Sky location, distance, binary orientation information extracted from
time-delays and differences in observed amplitude and phase in the
detectors

11



What Limits LIGO Sensitivity?
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Observed Gravitational Wave Events

Cumulative Count of Events and (non-retracted) Alerts
01 = 3, 02 =8, 03a =33, 03b =23, Total =67

e 67 events total 0
e O1 3events
e 02 8events
e O3 56 events

e 04 next year 2
~1 event/day
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Masses in the Stellar Graveyard

in Solar Masses
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Observed Binary Mergers
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Searching for Electromagnetic Counterparts

GW candidates Sky Localization EM facilities
LIGO-H LIGO-L

Event validation

» > afewmin e—— — 3 30 min

GW candidate
> Hours,days, —>* qodetes

weeks
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Improving Localization
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https://dcc.ligo.org/LIGO-P1200087/public

Virgo Joins LIGO — August 14, 2017

2017 ?lugust 14

For all 10 reported
Black Hole Binary Event
NO Electromagnetic
counterparts found !!

Credit: LIGO/Virgo/NASA/Leo Sin
QW170814 (Milky Way image: Axel Mellinger)

LH 1160 square degrees
LHV 60 square degrees
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Localizing Gravitational-wave Events

By measuring the arrival time of the gravitational-wave at each
observatory, it’s possible to identify its location on the sky




LIGO

Credit: R. Hurt, Caltech IPAC
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Fermi Satellite GRB detection 2 seconds later
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NS mqrger Short GRB X-ray Radio afterglow
/ \ \ >
» to 1.7s +5.23hrs \ +10.87 hrs +9 days +16 days

UV/Optical/NIR Kilonova

LHV sky localization

LVC + astronomers, AplL, 848, L12



Observations Across the Electromagnetic Spectrum
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“Kilonova”

NSF/LIGO/Sonoma State University/A. Sim




Light Curves

(Villar+ 2017 and refs therein)
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Extremely well characterized photometry of a Kilonova:

thermal emission by radiocative decay of heavy elements synthesized in
multicomponent (2-3) ejecta!
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Origin of the Heavy Elements

Big Dying Exploding Human synthesis
Bang low-mass massive No stable isctopes

fusion stars stars
B uluwis O F
-

Cosmic Verging Exploding 6 - 8 a
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Exceptional
Events

GW190425 Localization

Initial Alert
43 minute latency
BNS w/ >99% probability

90% region: 10,200 sq. deg.

Final
0% region: 8,284 sq. deg.
Distance: 88 — 228 Mpc

Update
31 hour latency

—_— ~ 0).R(
‘ X )8; /\ The signal was detected by only the
x < 0.03 v LIGO Livingston interferometer
81 === Galactic BAS
6 ¢W1 90425 The event has an estimated total
] mass of 3.4 M,
11 Galactic BN |
The combined mass of the neutron
2 i | stars is greater than all known
JA\M \H ﬂ ) neutron star binaries (galactic,
500 255 250 275 300 32 350 37 4m GW170817)

Mot (M



LIGO

Mystery Merger: GW190814

(Aug 14, 2018)

The most asymmetric mass ratio merger ever
observed, with a mass ratio m;/m, =9

The secondary mass of 2.6 M _sun lies in a ‘mass gap’;

» it’s greater than estimates the maximum
possible NS mass and less than masses of the
lightest black holes ever observed

» Comparable to the final merger product in
GW170817, which was more likely a black hole.

How did this system form? Like GW190425, this
detection again challenges existing binary formation
scenarios

» young dense star clusters and disks around
active galactic nuclei are favored, but many
other possibilities

Many follow up observations by electromagnetic
observatories, but no confirmed counterpart found

GW190814 m,
=26M,
2M 3M 4M 5M
mass , @ : @ : @ , @ >
PSR J0740+6620 BH candidate EM BHs
=21 M, ? =33 M, 25M,
Cromarhe+ (2018) L Thempson+ (2019) e.g. Ozel+ (2010)

GW170817 remnant
22TM,



Exceptional Events

GW190521: Binary Black Hole Merger ? —Total Mass = 150 M

Properties and astrophysical implications of the 150 M, binary black hole merger GW190521

Hanford Livingston Virgo
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_ GW190521

GW150914

Numerical relativity
Reconstructed (template)
T T

Very short duration (~0.1 s) > Massive source
Low peak frequency (~60 Hz)

Standard scenario: quasi-circular BBH merger

Very short inspiral signal

Alternative scenarios may be explored.:

Eccentric Binary, Head-on merger

Cosmic String



The Most Massive and Distant Black Hole
Merger Yet: GW190521

(May 21, 2019

LiGO

Normalized energy

The furthest GW event ever recorded: ~ 7 Glyr SR GwW190521 GW190521 i GW180521
distant = . Hanford (H1) Livingston (L1) Virgo (V1)

At least one of the progenitor black holes (85
M,,,) lies in the pair instability supernova gap

» Stars with helium cores in the mass range
64 - 135 M_ . undergo an instability and

sun

obliterate upon explosion

The final black hole mass (85 M) places it
firmly in the intermediate mass category
(between 102 -10°M,,,) = the first ever
observation of an intermediate mass black hole

Strong evident for spin precession; both
progenitor black holes were spinning

- Implications for how these black holes formed




LIGO A Possible Electromagnetic Counterpart to GW1901521

Zwicky Transient Facility surveyed 48% of the -
LIGO-Virgo 90% error box for GW190521 T

An electromagnetic flare in the visible was
found within the initial 90% LIGO-Virgo contour
beginning ~ 25 days after GW190521, lasting for
~ 100 days

»  Consistent with LIGO-Virgo initial distance
estimates

»  But less consistent with updated maps

The EM flare is consistent with emission from
gas in the accretion disk an active galactic
nucleus (AGN) excited by the ‘kicked’ black hole
passing through the AGN disk

Graham, et al. estimate the final black hole mass v o] ”f#ﬁ*--v----'-'-ﬁ"“n;t-‘-{*"*j’?;aiviv-----ﬁ ..t.,F.
to be ~ 100 M., with significant spin 0.0/ R f

58200 58300 58400 58500 58600 58700 58800 58900
MJD

Graham, et al., "Candidate Electromagnetic Counterpart to the Binary Black Hole Merger

Gravitational-Wave Event $190521g*, Phys. Rev. Lett. 124, 251102 (2020).



https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.251102

Proposed 3rd Generation Detectors

Einstein

Telescope
10 km

The Einstein Telescope: x10 aLIGO
* Deep Underground;
e 10 km arms
e Triangle (polarization)
* Cryogenic
* Low frequency configuration
* high frequency configuration
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Exploring Binary Systems with Increased Sensitivity
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