"Gravitational Waves & Multimessenger Astronomy"

XIX International Workshop on Neutrino Telescopes

Barry C Barish Caltech and UC Riverside 18-Feb-2021

Multimessenger Astronomy

Gravitational Waves

Einstein's Theory Contains Gravitational Waves

A necessary consequence of Special Relativity with its finite speed for information transfer

Gravitational waves come from the acceleration of masses and propagate away from their sources as a space-time warpage at the speed of light

gravitational radiation binary inspiral of compact objects

Astrophysical Sources signatures

- Compact binary inspiral: "chirps"
 - NS-NS waveforms are well described
 - BH-BH need better waveforms
 - search technique: matched templates
- Supernovae / GRBs:

"bursts"

- burst signals in coincidence with signals in electromagnetic radiation
- prompt alarm (~ one hour) with neutrino detectors
- Pulsars in our galaxy:

"periodic"

- search for observed neutron stars (frequency, doppler shift)
- all sky search (computing challenge)
- r-modes
- Cosmological Signal *"stochastic background"*

Einstein's Theory of Gravitation Gravitational Waves

• Using Minkowski metric, the information about spacetime curvature is contained in the metric as an added term, $h_{\mu\nu}$. In the weak field limit, the equation can be described with linear equations. If the choice of gauge is the *transverse traceless gauge* the formulation becomes a familiar wave equation

$$(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2})h_{\mu\nu} = 0$$

• The strain $h_{\mu\nu}$ takes the form of a plane wave propagating at the speed of light (c).

• Since gravity is spin 2, the waves have two components, but rotated by 45° instead of 90° from each other.

$$h_{\mu\nu} = h_+(t - z / c) + h_x(t - z / c)$$

Gravitational Waves

- Ripples of spacetime that stretch and compress spacetime itself
- The amplitude of the wave is $h \approx 10^{-21}$
- Change the distance between masses that are free to move by $\Delta L = h \times L$
- Spacetime is "stiff" so changes in distance are very small

Suspended Mass Interferometry

$$h = \frac{\Delta L}{L} \le 10^{-21}$$

L = 4 km $\Delta L \le 4 \times 10^{-18}$ meters

 $\Delta L \sim 10^{-12}$ wavelength of light $\Delta L \sim 10^{-12}$ vibrations at earth's surface

'Direct' Detection of Gravitational Waves LIGO Interferometers

Hanford, WA

Black Hole Merger: GW150914

Measuring the parameters

- Orbits decay due to emission of gravitational waves
 - Leading order determined by "chirp mass"

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{M^{1/5}} \simeq \frac{c^3}{G} \left[\frac{5}{96} \pi^{-8/3} f^{-11/3} \dot{f} \right]^{3/5}$$

- Next orders allow for measurement of mass ratio and spins
- We directly measure the red-shifted masses (1+z) m
- Amplitude inversely proportional to luminosity distance
- Orbital precession occurs when spins are misaligned with orbital angular momentum no evidence for precession.
- Sky location, distance, binary orientation information extracted from time-delays and differences in observed amplitude and phase in the detectors

What Limits LIGO Sensitivity?

Observed Gravitational Wave Events

- 67 events total
- 01 3 events
- O2 8 events
- 03 56 events
- O4 next year → ~1 event/day

GWTC-2 plot v1.0 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

Observed Binary Mergers

The Network in mid-2020's

Improving Localization

Virgo Joins LIGO – August 14, 2017

2017 August 14

For all 10 reported Black Hole Binary Event NO Electromagnetic counterparts found !!

LH 1160 square degrees LHV 60 square degrees

Localizing Gravitational-wave Events

By measuring the arrival time of the gravitational-wave at each observatory, it's possible to identify its location on the sky

Credit: R. Hurt, Caltech IPAC

Galaxy NGC 4993

Fermi Satellite GRB detection 2 seconds later

Observations Across the Electromagnetic Spectrum

Birth of Multimessenger Astronomy

"Kilonova"

NSF/LIGO/Sonoma State University/A. Simonnet

Light Curves

Extremely well characterized photometry of a Kilonova: thermal emission by radiocative decay of heavy elements synthesized in multicomponent (2-3) ejecta!

Origin of the Heavy Elements

Exceptional Events

The signal was detected by only the LIGO Livingston interferometer

The event has an estimated total mass of 3.4 M_{sun}

The combined mass of the neutron stars is greater than all known neutron star binaries (galactic, GW170817)

Mystery Merger: GW190814 (Aug 14, 2018)

- The most asymmetric mass ratio merger ever observed, with a mass ratio $m_1/m_2 = 9$
- The secondary mass of 2.6 M_sun lies in a 'mass gap';
 - it's greater than estimates the maximum possible NS mass and less than masses of the lightest black holes ever observed
 - » Comparable to the final merger product in GW170817, which was more likely a black hole.
- How did this system form? Like GW190425, this detection again challenges existing binary formation scenarios
 - » young dense star clusters and disks around active galactic nuclei are favored, but many other possibilities
- Many follow up observations by electromagnetic observatories, but no confirmed counterpart found

Exceptional Events

GW190521: Binary Black Hole Merger ? – Total Mass = 150 M_{\odot}

Properties and astrophysical implications of the $150\,M_\odot$ binary black hole merger GW190521

- Very short duration (~0.1 s)
- Low peak frequency (~60 Hz)

• Alternative scenarios may be explored:

Eccentric Binary, Head-on merger

Cosmic String

Massive source

LIGO

The Most Massive and Distant Black Hole Merger Yet: GW190521 (May 21, 2019)

- The furthest GW event ever recorded: ~ 7 Glyr distant
 - At least one of the progenitor black holes (85 M_{sun}) lies in the pair instability supernova gap
 - Stars with helium cores in the mass range 64 - 135 M_{sun} undergo an instability and obliterate upon explosion
 - The final black hole mass (85 M_{sun}) places it firmly in the intermediate mass category (between $10^2 - 10^5 M_{sun}$) $\rightarrow \underline{the \ first \ ever}$ observation of an intermediate mass black hole
- Strong evident for spin precession; both progenitor black holes were spinning
- ightarrow Implications for how these black holes formed

Orbital Angular Momentum

Orbital Plane Precession

A Possible Electromagnetic Counterpart to GW1901521

Zwicky Transient Facility surveyed 48% of the LIGO-Virgo 90% error box for GW190521

IGO

- An electromagnetic flare in the visible was found within the initial 90% LIGO-Virgo contour beginning ~ 25 days after GW190521, lasting for ~ 100 days
 - » Consistent with LIGO-Virgo initial distance estimates
 - » But less consistent with updated maps
- The EM flare is consistent with emission from gas in the accretion disk an active galactic nucleus (AGN) excited by the 'kicked' black hole passing through the AGN disk
- Graham, et al. estimate the final black hole mass to be \sim 100 M_{sun} with significant spin

Graham, et al., "Candidate Electromagnetic Counterpart to the Binary Black Hole Merger Gravitational-Wave Event \$190521g*, Phys. Rev. Lett. 124, 251102 (2020).

Proposed 3rd Generation Detectors

Einstein Telescope 10 km

The Einstein Telescope: x10 aLIGO

- Deep Underground;
- 10 km arms
- Triangle (polarization)
- Cryogenic
- Low frequency configuration
- high frequency configuration

Exploring Binary Systems with Increased Sensitivity

