# Feasibility study of solar neutrinos with CYGNO

#### First preliminary results

Samuele Torelli





# Physical motivations

- Directional DM detectors → capability of discriminating particles from different sources through directionality
- Possibility of making solar neutrinos an opportunity to study more than nuisance

- Solar neutrinos from pp cycle can be studied through elastic scattering on electrons
  - pp cycle neutrinos can be studied:
    - Low energy threshold (lower than Borexino)
    - Low background (Positive identification by sun direction correlation )





# **Expected** rate

• Total cross section calculated with quantum field theory

Differential cross section integrated form threshold to maximum electron energy

$$\begin{aligned} \sigma_{\nu_e}(E_{\nu}) &= \frac{G_F^2 m_e}{2\pi} \left\{ (g_V + g_A + 2)^2 \left[ \frac{2E_{\nu}^2}{(m_e + 2E_{\nu})} - T'_{e,Thr} \right] + \right. \\ &\left. - (g_V - g_A)^2 \frac{E_{\nu}}{3} \left[ \left( 1 - \frac{2E_{\nu}}{m_e + 2E_{\nu}} \right)^3 - \left( 1 - \frac{T'_{e,Thr}}{E_{\nu}} \right)^3 \right] + \right. \\ &\left. - (g_V - g_A)(g_V + g_A + 2) \frac{m_e}{2} \left[ \frac{4E_{\nu}^2}{(m_e + 2E_{\nu})^2} - \frac{T'_{e,Thr}^2}{E_{\nu}^2} \right] \right] \end{aligned}$$

Threshold on  $e^-$  E set at 20 keV

- Expected rate calculated on 60:40  $He/CF_4$  gas mixture @ latm 25°C
- Oscillation taken into account

$$P(\nu_e \to \nu_\mu) = P_{e\mu} = \frac{1}{2}\sin^2(2\theta_{12}) \quad P(\nu_e \to \nu_e) = P_{ee} = 1 - \frac{1}{2}\sin^2(2\theta_{12})$$

| q [MeV] | P(q)   | q $[MeV]$ | P(q)   | q $[MeV]$ |
|---------|--------|-----------|--------|-----------|
| 0.00504 | 0.0035 | 0.11089   | 1.2477 | 0.21675   |
| 0.01008 | 0.0138 | 0.11593   | 1.3417 | 0.22179   |
| 0.01512 | 0.0307 | 0.12097   | 1.4370 | 0.22683   |
| 0.02016 | 0.0538 | 0.12601   | 1.5335 | 0.23187   |
| 0.02520 | 0.0830 | 0.13106   | 1.6310 | 0.23691   |
| 0.03024 | 0.1179 | 0.13610   | 1.7291 | 0.24195   |
| 0.03528 | 0.1582 | 0.14114   | 1.8278 | 0.24699   |
| 0.04032 | 0.2038 | 0.14618   | 1.9267 | 0.25203   |
| 0.04537 | 0.2543 | 0.15122   | 2.0258 | 0.25707   |
|         |        |           |        |           |

• pp flux tabulated taken from Bahcall

• Resulted rate:

$$R = N_e \sum \varphi(E_i) (P_{ee} \sigma_{\nu_e}(E_{\nu,i}) + P_{e\mu} \sigma_{\nu_\mu}(E_{\nu,i}))) \Delta E_{\nu,i}$$

*i*-th flux component

 $R = 2.9 \cdot 10^{-8} \ \frac{events}{s \cdot m^3} = 0.9 \ \frac{events}{y \cdot m^3}$ 

Not so bad for a 1000  $m^3$  detector

## Expected electrons spectrum

•  $e^-$  angular distribution + energy spectrum:

I. Extraction of a random neutrino energy according to the flux











#### Expected electrons spectrum

- 3. Calculation of the  $e^-$  kinetic energy given  $E_{\nu}$  and  $\cos(\theta)$
- 4. Smearing of energy and angle according to the resolutions

 $E_{Sm} = E + gE$ 

g: factor extracted from a normalized gaussian with  $\mu = 0$  and  $\sigma = \sigma_F/E$ 

Same thing for the angle, but fixed  $\sigma_{\theta}$ 

5. Reconstruct the energy of the neutrino with  $E_{e^-}$  and  $\cos \theta$  smeared

$$E_{\nu,Reco} = \frac{-m_e T_e - \sqrt{T_e^2 m_e^2 \cos(\theta)^2 + 2T_e m_e^3 \cos(\theta)^2}}{(T_e - T_e \cos(\theta)^2 - 2m_e \cos(\theta)^2)}$$

$$\frac{\sigma_E}{E} = \sqrt{4.33 + \frac{1890}{E}} \qquad \qquad \sigma_\theta = 0.3490$$

$$T'_{e}(\theta) = \frac{2E_{\nu}^{2}m_{e}\cos^{2}(\theta)}{(E_{\nu} + m_{e})^{2} - E_{\nu}^{2}\cos^{2}(\theta)}$$

$$\frac{\sigma_E}{E} = \sqrt{4.33 + \frac{1890}{E}}$$

$$t_{\theta} = 0.3490 = 20^{\circ}$$

p-1

#### Results

- $\cos(\theta)$  distribution for two different threshold:  $20 - 100 \ keV$
- Signal free regions available for background measurements
- With higher threshold better signal but  $R \sim 0.3 ev/(m^3 y)$





- Electron energy spectrum reconstrucred
- Typical falling exponential signal

# Results





pp spectrum reconstructed (in agreement with the Borexino one)



Residual distribution

• Histogram std. dev.  $0.16E_{\nu}$ 

#### **Energy resolution**

- $\sigma_{E_{\nu}}/E_{\nu}$  vs  $E_{\nu}$  @ fixed  $e^-$  kinetic energy
- Same angular and Energy resolution of before
- I. Fix a neutrino Energy
- 2. Simulate the interaction ( $e^-$  Energy and  $\cos(\theta)$ )
- 3. In bins of electron energy build the  $E_{\nu,Reco}$  distrib.
- 4. Fit each projection (Crystal ball) for any  $E_{\nu}$
- 5. Build the  $\sigma_{E_{\nu}}/E_{\nu}$  vs  $E_{\nu}$  for different  $e^-$  energy





#### Results in neutrinos E resolution



The first has more sense?

#### Other comparison

# Comparison with Elisabetta's analytical result

The neutrino energy resolution  $\sigma_{Ev}/E_v$  is obtained from the derivatives of eq. (2) i.e.

$$\sigma_{\rm Ev} / E_{\rm v} = \sqrt{\{D_{\theta}^2 \sigma_{\theta}^2 + D_{\rm T}^2 (\sigma_{\rm T} / {\rm T})^2\}}$$
(11)

where the dimensionless logarithmic derivatives

$$D_{\theta} = (1/E_{v})(\partial E_{v}/\partial \theta) = (E_{v}/m_{e})\sqrt{\{1 + (2m_{e}/T) - [1 + (m_{e}/E_{v})]^{2}\}}$$
(12)  
$$D_{T} = (T/E_{v})(\partial E_{v}/\partial T) = (E_{v} + m_{e})/(T + 2m_{e})$$



Remember:  $FWHM = 2.355 \sigma_{Gaussian}$ 

#### Backup

#### Hellaz comparison

