Migdal measurement in CYGNO: Status

Neutron source: FNG?

Neutron spectrum (~ isotropic):

14 MeV - 10¹¹ n/s

 $2.5 \, \text{MeV} - 10^8 \, \text{n/s}$

Minimal distance from the center of interaction: 4 mm

Useful numbers:

AmBe spectrum:

 $1-10 \text{ MeV} - 2.2 \times 10^5 \text{ n/s}$

Migdal BR for Argon:

 $f(E_p) * 7.2 \times 10^{-5}$

Fluorescence yield (K shell, Ar):

0.14

Solid Angle/ 4π @ 50 cm for 20x20 cm² TPC:

1.27 %

Solid Angle/ 4π @ 10 cm for $20x20 \text{ cm}^2$ TPC: 31.8 %

$$f(E_n) = \left(\frac{q_e}{511 \,\text{eV}}\right)^2 = \left(\frac{1}{511 \,\text{eV}}\right)^2 \frac{2m_e^2 E_R^{max}}{m_T} = \left(\frac{1}{511 \,\text{eV}}\right)^2 \frac{2m_e^2}{m_T} \frac{4m_n m_T}{(m_n + m_T)^2} E_n$$

Google sheet with more infos <u>here</u>.

$$f(E_n = 14 \text{ MeV}) = 72.4$$

 $f(E_n = 2.5 \text{ MeV}) = 12.9$

O(3000 ev/day) @ 265 cm

arXiv:1707.07258

arXiv:2009.05939

Can the old data from LEMOn tell us something?

In these days we are looking at the old runs performed @ FNG, in particular run 815.

We installed and run the reconstruction code available on github.

We are trying to understand what are the 'observables' to look at: any suggestion?

Simulation

In the last week we talked with Giulia to understand if there is the possibility to set up a simulation with the aim of have a more complete comprehension of the detector behaviour.

The conclusion was that as a first step one could simulate a monochromatic neutron beam (together with a monochromatic X-ray beam) with a ~ 10 cm thick lead shielding.

However I must still look at the Geant4 code following the instruction I got from Giulia.

To conclude:

We are working in parallel on the various aspects of the problem to truly understand the feasibility of a Migdal measurement with the CYGNO apparatus.