

IHEP Diffractive group

V.Petrov, R.Ryutin, A.Godizov, A.Sobol, V.Samoilenko

πp and $\pi \pi$ scattering: towards the first LHC results

R.Ryutin, IHEP

DIFFRACTION 2010, Otranto, Italy

Forward Physics

Plan

- Historical outlook and motivations
- Model for charge exchange processes
- Extraction of the cross-sections from data. Theoretical errors.
- Experimental situation.
- Total πp and $\pi \pi$ cross-sections. Monte-Carlo and real data at 900 GeV and 7 TeV.
- Future prospects: elastic and inclusive di-jet cross-sections

Historical outlook and motivations

DIFFRACTION 2010, Otranto, Italy

Forward Physics

DIFFRACTION 2010, Otranto, Italy

Forward Physics

Model for Charge Exchange processes

Model for Charge Exchange processes

Absorbtion at $\sqrt{s=10}$ TeV

 $S(\xi, \overline{q}^2)$

DIFFRACTION 2010, Otranto, Italy

Forward Physics

 $S_{2}(\xi_{1}, \bar{q}_{1}^{2}, \xi_{2}=0.1, \bar{q}_{2}^{2}\sim 0)$ $S_{2}(\xi_{1,2}=0.1, \bar{q}_{1}^{2}, \bar{q}_{2}^{2})$

Extraction of π p and π π cross-sections

Function $S*t/m_{\pi}^2$ for $\xi=0.05$

Extraction of π p and π π cross-sections

Integral extraction procedure (depends on the model for absorbtion, but can be normalized to pp cross-sections!) Without LHC measurements (TOTEM, ...) at 10 TeV theoretical error from most popular models is about 10%, at 0.9 TeV errors are low, since we have the data at 1.9 TeV.

Extraction of π **p cross-sections from data**

	NA49		IS	<u>SR</u>		HERA	PHENIX
$\sqrt{\mathbf{s}}$	9.4	10.8	15.9	18.7	22.2	50	70
σ(ext.)	20±3.8	21.4±2.3	22.8±1.9	21.4±1.6	23.2±1.5	31±3.6	25.9±4.5
σ(PDG)	23.2	23.19	23.55	23.85	24.27	27.43	29.3

[B. Nicolescu et al. (COMPETE Coll.), ArXiv: hep-ph/0110170]

[A. Donnachie, P.V. Lanshoff, Phys. Lett. B296 (1992) 227]

[A.A. Godizov, V.A. Petrov, JHEP 0707 (2007) 083]

[C. Bourrely, J. Soffer, T. T. Wu, Eur. Phys. J. C28(2003)97]

Experimental tools

Forward Physics

Signal and backgrounds

Signal and backgrounds distributions

We propose to perform measurements of CE and DCE processes at LHC. For the leading neutron detection Zero Degree Calorimeter could be used.

Monte-Carlo for CE (methods)

We selected events with 1 neutron detected in ZDCForward and look on Calo in forward and backward region

Total π p & π π cross-sections from CE&DCE (MC)

Total π p & π π cross-sections from CE&DCE (MC)

CE & DCE at 900 GeV

Process	CE	DCE	SD	DD	MB	Elastic	Total
σ , mb	1.76	0.14	11.7	6.4	32.5	12.8	65.3

CE selection	CE	-	DCE	1	Diffraction	4	MB	$(S:B)_{CE}$
NO	1	1	0.08	:	10.3	- 27	19.5	1:30
CE1	1	:	0.11	:	0.44	20	0.07	10:6
CEI & CE2	1	-	0.07	14	0	5	0.007	100:8

are the area and an area and an area and						-		1 /0
NO	1	1	12.5	12	128.8	1	243.8	1:385
DCE1	1	:	0.1	1	0.04	1	0	100:14
DCE1 & DCE2	1		0.03	:	0	:	0	100:3

DCE selection DCE : CE : Diffraction : MB (S:B)ce

At 900 GeV we have good chances to get 10^7 CE and 10^6 DCE events at 1 pb^-1, using ZDC+CMS Calorimeters only!

Model dependent extraction of π p & π π total cross-sections at 200-600 & 50-350 GeV

Total $\{\pi, \rho, a_2\}$ p cross-sections from CE (MC)

Total $\{\pi, \rho, a_2\}\pi$ cross-sections from DCE (MC)

At 900 GeV $\rho\pi$ and a2 π exchanges are suppressed from 47% to 19% by ZDC acceptance.

At 7000 GeV $\rho\pi$ +a2 π exchanges remain at level ~43%.

DIFFRACTION 2010, Otranto, Italy

Elastic $\pi p \& \pi \pi$ cross-sections from CE&DCE (MC)

Elastic CE & DCE at 10 TeV

Elastic πp cross-sections from CE

Elastic CE at 10 TeV: pion detection

Future prospects: pion structure functions

Parton distributions in a pion in a still unexplored domain of Q^2 and x

Summary

• CE (pp \rightarrow nX) and DCE (pp \rightarrow nXn) processes measured at LHC could provide us with unique information on π +p and π + π + cross sections at very high c.m. energy (up to several TeV): total, elastic, inclusive jet cross-sections, ... => universal behaviour, value of absorbtion, diffractive patterns, parton distributions in a pion, ...

• Cross-sections for CE & DCE processes are estimated to be 1.5 mb & 0.2 mb at 10 TeV (very large number of events, even with low efficiency of registration)

• Model for charge exchange processes (with π , ρ and a2 reggeons) in the range 0<qt<0.5 GeV, 0.0001< ξ <0.4, 0.9 TeV< \sqrt{s} <14 TeV was developed and applied to MC (generator MonChER1.0: 4 models for pion-proton scattering, 3IP model for absorbtion)

• Model-independent extraction of π + p and π + π + cross-sections is possible for LHC if we can measure t-distributions. It is not possible for the present design of ZDC (or at 900 GeV with some restrictions) => At this moment only model-dependent extraction is possible with uncertainties in absorbtion (can be normalized to pp, at present we have 10% model error from most popular models)

• Backgrounds: SD,DD,CD,MB are suppressed at $|t| < 0.25 \text{ GeV}^2$ (S/B~10). But even for the whole ZDC acceptance we can reach also S/B~10 with efficiency 1-3% for S π E and 5-10% for D π E without t-cuts, using the information from CMS detectors. Reggeon backgrounds can reach 3% (8%) at 0.9 (7) TeV for CE and 19% (43%) for DCE. Pile-up is supposed to be low at first runs.

• Total and inclusive dijet cross-sections π p and π π cross-sections could be extracted from the real data at 0.9!!! and 7 TeV in a model-dependent way.

• For elastic cross-sections and t-measurements we need modifications of detectors (FSC, ZDC, THGEM).

Backup slides (absorbtion formulaes)

$$\begin{split} \Phi_B(\xi, \vec{q}^{\ 2}) &= \frac{N(\xi)}{2\pi} \left(\frac{1}{\vec{q}^{\ 2} + \epsilon^2} + i \frac{\pi \alpha'_{\pi}}{2(1-\xi)} \right) \exp(-\beta^2 \vec{q}^{\ 2}), \\ N(\xi) &= (1-\xi) \frac{G_{\pi+pn}}{2} \xi^{\frac{\alpha'_{\pi} \epsilon^2}{1-\xi}} \exp\left[-b \frac{m_p^2 \xi^2}{1-\xi} \right], \\ \beta^2 &= \frac{b + \alpha'_{\pi} \ln \frac{1}{\xi}}{1-\xi}, \ \epsilon^2 = m_p^2 \xi^2 + m_{\pi}^2 (1-\xi), \\ \Theta_0(b,\xi, |\vec{q}|) &= \frac{2\pi \ b \ J_0(b \ |\vec{q}|)}{N(\xi)} \int_0^\infty dk \ k \ J_0(b \ k) \Phi_B(\xi, k^2), \\ \Theta_s(b,\xi, |\vec{q}|) &= \frac{2\pi \ b \ J_1(b \ |\vec{q}|)}{N(\xi)} \int_0^\infty dk \ k^2 \ J_1(b \ k) \Phi_B(\xi, k^2) \\ V(b) &= \exp\left(-\Omega_{el}(s/s_0, b)\right), \\ \Omega_{el} &= \sum_{i=1}^3 \Omega_i, \\ \Omega_i &= \frac{2c_i}{16\pi B_i} \left(\frac{s}{s_0} e^{-i\frac{\pi}{2}}\right)^{\alpha_{IP_i}(0)-1} \exp\left[-\frac{b^2}{4B_i}\right], \\ B_i &= \alpha'_{IP_i} \ln\left(\frac{s}{s_0} e^{-i\frac{\pi}{2}}\right) + \frac{r_i^2}{4}. \end{split}$$

i	c_i	$r_i^2 \; ({\rm GeV}^{-2})$
1	53.0 ± 0.8	6.3096 ± 0.2522
2	9.68 ± 0.16	3.1097 ± 0.1817
3	1.67 ± 0.07	2.4771 ± 0.0964

$$\begin{split} \Phi_0 &= \frac{N(\xi)}{2\pi} \int_0^\infty db \; \Theta_0(b,\xi,|\vec{q}|) V(b), \\ |\vec{q}| \Phi_s &= \frac{N(\xi)}{2\pi} \int_0^\infty db \; \Theta_s(b,\xi,|\vec{q}|) V(b), \\ S &= \frac{m_p^2 \xi^2 |\Phi_0(s/s_0,\xi,\vec{q}\,^2)|^2 + \vec{q}\,^2 |\Phi_s(s/s_0,\xi,\vec{q}\,^2)|^2}{(m_p^2 \xi^2 + \vec{q}\,^2) |\Phi_B(\xi,\vec{q}\,^2)|^2} \end{split}$$

$$\bar{\Phi}_{ij} = \frac{N(\xi_1)N(\xi_2)}{(2\pi)^2} \int_0^\infty db_1 db_2 I_\phi(b_1, b_2) \Theta_i(b_1, \xi_1, |\vec{q_1}|) \Theta_j(b_2, \xi_2, |\vec{q_2}|),$$

$$I_\phi(b_1, b_2) = \int_0^\pi \frac{d\phi}{\pi} V\left(\sqrt{b_1^2 + b_2^2 - 2b_1 b_2 \cos\phi}\right),$$

$$\rho_{00} = m_p^2 \xi_1 \xi_2, \ \rho_{0s} = m_p \xi_1, \ \rho_{s0} = m_p \xi_2, \ \rho_{ss} = 1,$$

$$S_2 = \frac{\sum_{i,j=0,s} \rho_{ij}^2 |\bar{\Phi}_{ij}(s/s_0, \{\xi_i\}, \{\vec{q_i}^2\})|^2}{\prod_{i=1}^2 \left[(m_p^2 \xi_i^2 + \vec{q_i}^2) |\Phi_B(\xi_i, \vec{q_i}^2)|^2\right]}$$

DIFFRACTION 2010, Otranto, Italy

Forward Physics

Backup slides (total $S\pi E$ and $D\pi E$ cross-sections)

Since there are no real data for $\pi\pi$ cross-sections, we can use factorization assumptions:

COMPETE
DL
$$\sigma_{\pi\pi} = \frac{\sigma_{\pi p}^2}{\sigma_{pp}}$$
GP
BSW $\beta_{\pi\pi}(t) = \frac{\beta_{\pi p}(t)^2}{\beta_{pp}(t)}$ $\beta(t)$ are residues of reggeon
poles in eikonalsDIFFRACTION 2010, Otranto, ItalyForward PhysicsR.Ryuti:

Backup slides (π p cross-sections from data)

DIFFRACTION 2010, Otranto, Italy

Forward Physics

Backup slides (cross-sections at 900 GeV)

$d\sigma/drd\xi$ (mb/cm)

DIFFRACTION 2010, Otranto, Italy

Forward Physics

Backup slides (cross-sections at 7 TeV)

