Amplitude analysis and polarisation measurement of the Λ_c^+ baryon in $pK^-\pi^+$ final state for electromagnetic dipole moment experiment

Daniele Marangotto

INFN and Università degli Studi di Milano, Italy

Virtual Seminar, 09th Oct 2020

Electromagnetic dipole moments

 Magnetic (MDM) and electric (EDM) dipole moments are electromagnetic properties proportional to the particle spin

$$\hat{oldsymbol{\mu}} = oldsymbol{g} rac{\mu_B}{\hbar} \hat{oldsymbol{\mathsf{S}}}$$

- Elementary particles g = 2+ QFT loop corrections
- Composite particles $g \neq 2$ depending on their structure
- → Probe for baryon structure Low-energy QCD physics

$$\hat{oldsymbol{\delta}} = oldsymbol{d} rac{\mu_B}{\hbar} \hat{oldsymbol{\mathsf{S}}}$$

- EDM violates time-reversal and parity symmetries
- No flavour-diagonal CP-violation sources in the SM
- → Probe for new physics No SM background

EDM measurements

- EDMs probed in different systems: leptons, nucleons, nuclei, atoms, and Λ baryon
- Heavy baryon and τ lepton EDMs never measured so far; only indirect limits from other measurements available

MDM as probe for baryon structure

 No heavy baryon MDM measurement performed to date, precise measurement can discriminate among different theoretical models

- Three ingredients needed:
- Polariser
- (Strong) Electromagnetic field
- Polarimeter

- Polariser:
- p-nucleus collisions produce baryons with polarisation orthogonal to the p-B production plane for parity symmetry in strong interactions

- Measured for with strange baryons, indications for significant polarisation also for with Λ_c^+
- But at smaller energies than at LHC
- $ightarrow arLambda_c^+$ polarisation measurement in p-Ne fixed target collisions at with $\sqrt{s} = 68.6 \, \mathrm{GeV}$ at LHCb

- (Strong) Electromagnetic field:
- Interatomic electric field $E \approx 10^{11} eV/m$ of a bent crystal
- Spin after channeling along the crystal with deflection angle θ_C

$$\mathbf{s} = s_0 \left(rac{d}{g-2} (1-\cos\Phi), \cos\Phi, \sin\Phi
ight)$$
 $\Phi pprox rac{g-2}{2} \gamma heta_C$

 Main MDM precession in the bending plane, the EDM producing an orthogonal spin component otherwise not present

- Polarimeter:
- Measurement of the heavy baryon polarisation after channeling reconstructing the decay angular distribution
- $\Lambda_c^+ \to p K^- \pi^+$ main decay channel, $\mathcal{B} \approx 6\%$, allowing polarisation measurement with best precision
- Two-body decays have lower $\mathcal{B} \lessapprox 1\%$ and involve long-living strange particles
- Previous amplitude analysis on \approx 1000 events performed by E791 experiment (Phys. Lett. B471 (2000) 449) not useful
- Millions of events recorded by LHCb from semileptonic production $\Lambda_b^0 \to \Lambda_c^+ \mu^- X$
- \rightarrow Amplitude analysis of the with $\Lambda_c^+ \rightarrow pK^-\pi^+$ decay at LHCb

Physics with amplitude analysis

- Study of the decay structure
- Resonance composition, characterisation and interference
- Polarisation measurements
- Essential information for heavy baryons dipole moment measurement
- Parity-violation studies
- P-violation determines correlation between polarisation and decay kinematics

$$rac{dN}{d\Omega^*} \propto 1 + rac{lpha_f}{s} \, \hat{\mathbf{k}},$$

- CP-violation searches with enhanced sensitivity
- Decay structure allow to search and localise CP-violation sources

$\Lambda_c^+ \to p K^- \pi^+$ decays from semileptonic production

- Considered $\Lambda_c^+ \to pK^-\pi^+$ decays from Λ_b^0 semileptonic decays
- $\Lambda_c^+\mu^-$ vertices displaced from pp collision vertex
- Very pure selection exploiting LHCb particle identification
- \sim 1 million of $\Lambda_c^+ \to pK^-\pi^+$ candidates from 2016 dataset only
- Negligible background contribution $\approx 1.7\%$

Helicity amplitudes

- Decay model written in the helicity formalism with a new method I developed addressing the issue of the matching of final particle spin states among different decay chains in full generality for generic multi-body decays
- The definition of proton helicity states is different for different decay chains: they need to be matched to a reference set of spin states
- This method ensure a correct matching for generic multi-body decays, preprint arXiv:1911.10025
- Allows a good fit of the $\Lambda_c^+ \to pK^-\pi^+$ distributions, which was impossible with the matching method used in literature, proved wrong

Tests

- Spin matching methods tested for $\Lambda_c^+ \to p K^- \pi^+$ amplitudes exploiting properties from rotational invariance
 - Decay rate isotropic for zero polarisation
- Invariant mass distributions independent of polarisation
- Satisfied by our method, not by the older one
- Proven equivalence between our method and the Dalitz-plot decomposition one

Analytical study of the $\Lambda_c^+ o p K^- \pi^+$ decay rate

- $\Lambda_c^+ \to p K^- \pi^+$ amplitude also studied analytically
- Understood polarisation signatures on decay rate
- Proven that interference effects gives sensitivity to all the amplitude model parameters
- Allowing simultaneous measurement of amplitude model and polarisation vector
- Published, AHEP (2020) 7463073

Maximum likelihood fit

 Model parameters (polarisation, couplings, resonance parameters) determined from data by minimising the negative log-likelihood

$$-\log \mathcal{L}(\omega) = -\sum_{i=1}^{N} \log \left[p(\Omega_i | \omega) + \frac{p_{bkg}(\Omega_i) I(\omega)}{\epsilon(\Omega_i)} \frac{n_{bkg}}{n_{sig}} \right] + N \log I(\omega) + \text{constant},$$

- Efficiency and background parametrisation added, their contribution suppressed by $n_{bka}/n_{sia}\approx 1.7\%$
- Normalisation $I(\omega)$ computed directly using simulated events reconstructed by LHCb

Amplitude fit

- Fitting code developed basing on TensorFlowAnalysis package, based on machine-learning framework Tensorflow
- Minimisation performed with the MINUIT package
- Performed on 100k $\Lambda_a^+ \to pK^-\pi^+$ candidates, with 450k MC events for integration/efficiency folding
- Performed different times with randomised starting values for floating parameters, best result chosen according to best log-likelihood

Latest improvements

- Finalisation and optimisation of the fitting code
- Introduction of background contribution via Legendre polynomial expansion
- Improvement of detector efficiency description, by correcting the simulation sample according to the Λ_c^+ kinematics observed in data
- Determination of the amplitude model
- Planned studies for systematic uncertainties evaluation

Model building

- Amplitude model built starting from contributions visible in the Dalitz plot and adding states according to PDG
- Fit quality measured by χ^2 test
- Contributions improving the fit are retained
- Those leading to similar quality will be considered for systematic uncertainty evaluation

Current model

- Resonances parametrised by relativistic Breit-Wigner
- Specific treatment for $\Lambda(1405)$, non-res K^* and $K_0^*(1430)$
- Most resonance parameters fixed to PDG mean values
- Ranges indicate limits for fitted values, reflecting PDG knowledge uncertainty or resolution effects

Resonance	J ^P	BW mass (MeV)	BW width (${ m MeV}$)
Λ (1405)	1/2-	1405.1	50.5
Λ (1520)	3/2-	1515 — 1523	10 - 20
Λ (1600)	1/2+	1560 - 1700	50 - 250
Λ (1670)	1/2-	1670	25
$\Lambda(1690)$	3/2-	1690	60
$\Lambda(2000)$	1/2-	1900 - 2100	20 - 400
Δ^{++} (1232)	3/2+	1232	120
Δ^{++} (1600)	$3/2^{+}$	1500 - 1640	200 - 300
$\Delta^{++}(1700)$	3/2-	1690 - 1730	220 - 380
Non-resonant	0+		
$K_0^*(700)$	0^{+}	824	478
K*(892)	1-	890 - 900	47.3
K*(1410)	1-	1421	236
$K_0^*(1430)$	0^+	1425	270

Current model

- Good fit, no evident discrepancies left
- Large contribution of "unexpected"
 Λ(2000) 1/2 state
- Significant interference effects
- Large, > 60%, polarisation in $\Lambda_c^+ \mu^-$ plane
- Normal (T-odd) polarisation compatible with zero within 1%

Sensitivity to polarisation study

- Computed average event Fisher information for the reduced model from Dalitz fits
- $S \approx 0.38$
- Effective $\alpha \approx 0.65$
- Almost independent on the particular amplitude model assumed
- Similar to that assumed for $\Lambda_c^+ o \Delta^{++} K^-$ decays in the Λ_c^+ dipole moments sensitivity study
- Can increase the useful $\Lambda_c^+ \to p K^- \pi^+$ decay statistics to measure the Λ_c^+ dipole moments by a factor six

Progress on Λ_c^+ polarisation in p-Ne analysis

- New p-Ne data sample from reprocessing of LHCb Ion and Fixed-target datasets
- Better efficiency on $\Lambda_c^+ \to pK^-\pi^+$ decays, increasing the available statistics to perform the polarisation measurement
- New simulation sample reproducing $\Lambda_c^+ \to pK^-\pi^+$ decays in fixed-target conditions
- One order of magnitude larger than the previous
- Allows refined signal selection and better description of the detector response

Prospects

- Systematic uncertainty evaluation only missing piece to completion
- Analysis started review process within LHCb Charm working group
- Aiming presentation at winter conferences
- $\Lambda_c^+ \to pK^-\pi^+$ amplitude model constitutes input for the Λ_c^+ polarisation measurement in p-Ne fixed target collisions, which will be the next main focus

Backup Slides

Amplitude model for $\Lambda_c^+ o p K^- \pi^+$ decay

• Amplitudes built for each intermediate resonance R $\Lambda_c^+ \to R\{p, K^-, \pi^+\}, R \to \{K^-\pi^+, p\pi^+, pK^-\}$ multiplying two-body helicity amplitudes, e.g.

$$\mathcal{A}_{m_{\Lambda_c^+},\lambda_R,\lambda_p}^{[R]}(\Omega)=\mathcal{A}_{\lambda_R,0}^{\Lambda_c^+ o R\pi^+}\mathcal{A}_{\lambda_p,0}^{R o p\mathsf{K}^-}$$

 Total helicity amplitudes for definite initial and final particles helicities obtained summing over all intermediate resonance helicity states

$$\mathcal{A}_{m_{\Lambda_{c}^{+}},\lambda_{p}}(\Omega) = \sum_{i=1}^{N_{R}} \sum_{\lambda_{R_{i}}=-J_{R_{i}}}^{J_{R_{i}}} \mathcal{A}_{m_{\Lambda_{c}^{+}},\lambda_{R_{i}},\lambda_{p}}^{[R_{i}]}(\Omega)$$

Polarised decay rate

• Generic Λ_c^+ particle polarisation in a given coordinate frame described by the density matrix

$$ho^{\Lambda_c^+} = rac{1}{2} \left(\mathcal{I} + oldsymbol{P} \cdot oldsymbol{\sigma}
ight) = rac{1}{2} \left(egin{array}{cc} 1 + P_{\mathsf{Z}} & P_{\mathsf{X}} - i P_{\mathsf{y}} \ P_{\mathsf{X}} + i P_{\mathsf{y}} & 1 - P_{\mathsf{z}} \end{array}
ight)$$

• Decay probability distribution obtained summing modulo squared helicity amplitudes over initial Λ_c^+ polarisation and unmeasured final particles helicities

$$\begin{split} \rho(\Omega, \textbf{\textit{P}}) &\propto \sum_{m_p = \pm 1/2} \left[(1 + P_z) |\mathcal{A}_{1/2, m_p}(\Omega)|^2 + (1 - P_z) |\mathcal{A}_{-1/2, m_p}(\Omega)|^2 \right. \\ &+ (P_x - i P_y) \mathcal{A}_{1/2, m_p}^*(\Omega) \mathcal{A}_{-1/2, m_p}(\Omega) \\ &+ (P_x + i P_y) \mathcal{A}_{1/2, m_p}(\Omega) \mathcal{A}_{-1/2, m_p}^*(\Omega) \right] \end{split}$$

Baryon 3-body decay kinematics description

- Three-body decays described by 5 degrees of freedom: 2 two-body "Dalitz" invariant masses + 3 decay plane orientation angles
- For polarised baryons spherical symmetry is broken: decay plane orientation angles must be included in the amplitude analysis

• Euler rotation angles ϕ_p , θ_p , χ from polarisation frame to decay plane

